1
|
Lin HH, Lim I, Sletten EM. Counterion Exchange Enhances the Brightness and Photostability of a Fluorous Cyanine Dye. Chemistry 2024; 30:e202402514. [PMID: 39231339 PMCID: PMC12068422 DOI: 10.1002/chem.202402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Fluorofluorophores are a unique class of fluorophores that can be solubilized in perfluorocarbons (PFCs) and used to study biological systems. However, because of the low dielectric constant and high oxygen solubility in the fluorous phase, the brightness and photostability of the fluorofluorophores are significantly diminished. Here, we leveraged the tight ion pairing in the fluorous phase to improve the photophysical properties of a fluorous soluble pentamethine dye (FCy5) via counterion exchange. We found that larger, softer, fluorinated, aryl borate counterions promote the ideal polymethine state where charge delocalization across the polymethine chain increases the brightness (6-fold) and photostability (55-fold) of FCy5.
Collapse
Affiliation(s)
- Helen H Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
| | - Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
- Present Address: Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, CA, 94305, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Dr., East Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Baryzewska A, Roth C, Seeberger PH, Zeininger L. In situ Tracking of Exoenzyme Activity Using Droplet Luminescence Concentrators for Ratiometric Detection of Bacteria. ACS Sens 2023; 8:4143-4151. [PMID: 37933952 PMCID: PMC10683504 DOI: 10.1021/acssensors.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
We demonstrate a novel, rapid, and cost-effective biosensing paradigm that is based on an in situ visualization of bacterial exoenzyme activity using biphasic Janus emulsion droplets. Sensitization of the droplets toward dominant extracellular enzymes of bacterial pathogens is realized via selective functionalization of one hemisphere of Janus droplets with enzyme-cleavable surfactants. Surfactant cleavage results in an interfacial tension increase at the respective droplet interface, which readily transduces into a microscopically detectable change of the internal droplet morphologies. A macroscopic fluorescence read-out of such morphological transitions is obtained via ratiometrically recording the angle-dependent anisotropic emission signatures of perylene-containing droplets from two different angles. The optical read-out method facilitates detection of marginal morphological responses of polydisperse droplet samples that can be easily produced in any environment. The performance of Janus droplets as powerful optical transducers and signal amplifiers is highlighted by rapid (<4 h) and cost-effective antibody and DNA-free identification of three major foodborne pathogens, with detection thresholds of below 10 CFU mL-1 for Salmonella and <102 to 103 CFU mL-1 for Listeria and Escherichia coli.
Collapse
Affiliation(s)
- Agata
W. Baryzewska
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Christian Roth
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Rakesh N, Tu H, Chang P, Gebreyesus ST, Lin C. Innovative Real-Time Flow Sensor Using Detergent-Free Complex Emulsions with Dual-Emissive Semi-Perfluoroalkyl Substituted Α-Cyanostilbene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304108. [PMID: 37702128 PMCID: PMC10625100 DOI: 10.1002/advs.202304108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/16/2023] [Indexed: 09/14/2023]
Abstract
In this study, the potential of complex emulsions is investigated as transducers in sensing applications. Complex emulsions are stabilized without external detergents by developing a novel α-cyanostilbene substituted with PEG and semi-perfluoroalkyl chain (CNFCPEG). CNFCPEG exhibits unique variable emission properties depending on its aggregation state, allowing dual blue and green emissions in complex emulsions with hydrocarbon-in-fluorocarbon-in-water (H/F/W) morphology. The green excimer emissions result from the self-assembly of CNFCPEG at the fluorocarbon/water interface, while the blue emission observed is due to aggregation in the organic phase. A novel flow-injection method is developed by incorporating complex emulsions with CNFCPEG into multiple-well flow chips (MWFC). Iodine is successfully detected in a mobile aqueous solution by monitoring morphology changes. The findings demonstrate that self-stabilized complex emulsions with MWFC hold great promise for real-time sensing without costly instruments.
Collapse
Affiliation(s)
- Narani Rakesh
- Department of ChemistryNational Dong Hwa UniversityShoufeng974301Taiwan
| | - Hsiung‐Lin Tu
- Institute of ChemistryAcademia SinicaNangangTaipei115201Taiwan
| | - Po‐Chun Chang
- Department of ChemistryNational Dong Hwa UniversityShoufeng974301Taiwan
| | | | - Che‐Jen Lin
- Department of ChemistryNational Dong Hwa UniversityShoufeng974301Taiwan
| |
Collapse
|
4
|
Durkin TJ, Barua B, Holmstrom JJ, Karanikola V, Savagatrup S. Functionalized Amphiphilic Block Copolymers and Complex Emulsions for Selective Sensing of Dissolved Metals at Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12845-12854. [PMID: 37625160 DOI: 10.1021/acs.langmuir.3c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Increasing contamination in potable water supplies necessitates the development of sensing methods that provide the speed and selectivity necessary for safety. One promising method relies on recognition and detection at the liquid-liquid interface of dynamic complex emulsions. These all-liquid materials transduce changes in interfacial tensions into optical signals via the coupling of their chemical, physical, and optical properties. Thus, to introduce selectivity, it is necessary to modify the liquid-liquid interface with an interfacially stable and selective recognition unit. To this end, we report the synthesis and characterization of amphiphilic block copolymers modified with metal chelators to selectively measure the concentrations of dissolved metal ions. We find that significant reduction in interfacial tensions arises upon quantitative addition of metal ions with high affinity toward functionalized chelators. Furthermore, measurements from UV-vis spectroscopy reveal that complexation of the block copolymers with metal ions leads to an increase in surface excess and surfactant effectiveness. We also demonstrate selective detection of iron(III) cations (Fe3+) on the μM levels even through interference from other mono-, di-, or trivalent cations in complex matrices of synthetic groundwater. Our results provide a unique platform that couples selective recognition and modulation of interfacial behaviors and demonstrates a step forward in the development of the multiplexed sensing device needed to deconvolute the complicated array of contaminants that comprise real-world environmental samples.
Collapse
Affiliation(s)
- Tyler J Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Baishali Barua
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Jamie J Holmstrom
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Vasiliki Karanikola
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Zeininger L. Responsive Janus droplets as modular sensory layers for the optical detection of bacteria. Anal Bioanal Chem 2023:10.1007/s00216-023-04838-w. [PMID: 37450000 PMCID: PMC10404245 DOI: 10.1007/s00216-023-04838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The field of biosensor development is fueled by innovations in new functional transduction materials and technologies. Material innovations promise to extend current sensor hardware limitations, reduce analysis costs, and ensure broad application of sensor methods. Optical sensors are particularly attractive because they enable sensitive and noninvasive analyte detection in near real-time. Optical transducers convert physical, chemical, or biological events into detectable changes in fluorescence, refractive index, or spectroscopic shifts. Thus, in addition to sophisticated biochemical selector designs, smart transducers can improve signal transmission and amplification, thereby greatly facilitating the practical applicability of biosensors, which, to date, is often hampered by complications such as difficult replication of reproducible selector-analyte interactions within a uniform and consistent sensing area. In this context, stimuli-responsive and optically active Janus emulsions, which are dispersions of kinetically stabilized biphasic fluid droplets, have emerged as a novel triggerable material platform that provides as a versatile and cost-effective alternative for the generation of reproducible, highly sensitive, and modular optical sensing layers. The intrinsic and unprecedented chemical-morphological-optical coupling inside Janus droplets has facilitated optical signal transduction and amplification in various chemo- and biosensor paradigms, which include examples for the rapid and cost-effective detection of major foodborne pathogens. These initial demonstrations resulted in detection limits that rival the capabilities of current commercial platforms. This trend article aims to present a conceptual summary of these initial efforts and to provide a concise and comprehensive overview of the pivotal kinetic and thermodynamic principles that govern the ability of Janus droplets to sensitively and selectively respond to and interact with bacteria.
Collapse
Affiliation(s)
- Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
6
|
Barua B, Durkin TJ, Beeley IM, Gadh A, Savagatrup S. Multiplexed and continuous microfluidic sensors using dynamic complex droplets. SOFT MATTER 2023; 19:1930-1940. [PMID: 36807488 DOI: 10.1039/d3sm00074e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emissive complex droplets with reconfigurable morphology and dynamic optical properties offer exciting opportunities as chemical sensors due to their stimuli-responsive characteristics. In this work, we demonstrated a real-time optical sensing platform that combines poly(dimethylsiloxane) (PDMS) microfluidics and complex droplets as sensing materials. We utilized a mechanism, called directional emission, to transduce changes in interfacial tension into optical signals. We discuss the fabrication and integration of PDMS microfluidics with complex emulsions to facilitate continuous measurement of fluorescent emission and, ultimately, the interfacial tensions. Furthermore, by varying the interfacial functionalization and fluorescent dye with characteristic wavelength, we generate multiple formulations of droplets and obtain differential responses to stimuli that alter interfacial tensions (i.e., composition of surfactants, pH). Our results illustrate a proof-of-concept multiplexed and continuous sensing platform with potential applications in miniaturized, on-site environmental monitoring and biosensing.
Collapse
Affiliation(s)
- Baishali Barua
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Tyler J Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Isabel M Beeley
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Aakanksha Gadh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| |
Collapse
|
7
|
Marqués PS, Krajewska M, Frank BD, Prochaska K, Zeininger L. Morphology-Dependent Aggregation-Induced Emission of Janus Emulsion Surfactants. Chemistry 2023; 29:e202203790. [PMID: 36661211 DOI: 10.1002/chem.202203790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
We report a novel stimuli-responsive fluorescent material platform that relies on an evocation of aggregation-induced emission (AIE) from tetraphenylethylene (TPE)-based surfactants localized at one hemisphere of biphasic micro-scale Janus emulsion droplets. Dynamic alterations in the available interfacial area were evoked through surfactant-induced dynamic changes of the internal droplet morphology that can be modulated as a function of the balance of interfacial tensions of the droplet constituent phases. Thus, by analogy with a Langmuir-Blodgett trough that enables selective concentration of surfactants at a liquid-gas interface, we demonstrate here a method for controllable modulation of the available interfacial area of surfactant-functionalized liquid-liquid interfaces. We show that a morphology-dependent alteration of the interfacial area can be used to evoke an optical signal, by selectively assembling synthesized TPE-based surfactants on the respective droplet interfaces. A trigger-induced increase in the concentration of TPE-based surfactants at the liquid-liquid interfaces results in an evocation of aggregation-induced emission (AIE), inducing an up to 3.9-fold increase in the measured emission intensity of the droplets.
Collapse
Affiliation(s)
- Pablo Simón Marqués
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Martyna Krajewska
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Bradley D Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
8
|
Trinh V, Malloy CS, Durkin TJ, Gadh A, Savagatrup S. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sens 2022; 7:1514-1523. [PMID: 35442626 DOI: 10.1021/acssensors.2c00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contamination of per- and polyfluoroalkyl substances (PFAS) in water supplies will continue to have serious health and environmental consequences. Despite the importance of monitoring the concentrations of PFAS at potential sites of contamination and at treatment plants, there are few suitable and rapid on-site methods. Many nonconventional techniques do not possess the necessary selectivity and sensitivity to distinguish PFAS from other surface-active components and to quantify the low concentrations in real-world conditions. Herein, we report a novel and rapid method for the detection of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by leveraging their differential behaviors at the interfaces of emissive complex droplets. Measurement of surface and interfacial tensions via a force tensiometer reveals that PFAS preferentially self-assemble at the water-fluorocarbon oil interface (F/W) rather than the water-hydrocarbon oil interface (H/W). We also observe an opposite behavior for hydrocarbon surfactants. This difference in interfacial behavior produces distinct effects on the morphological change and optical emission of biphasic oil-in-water droplets. The change in the intensity of fluorescence emission, measured with a simple spectroscopic setup, correlates with the concentrations of PFAS. We also demonstrate that the range of detection and sensitivity can be tuned by adjusting the initial composition of the complex droplets. Our results illustrate an alternative mode of sensors that may provide a rapid and on-site detection of PFAS.
Collapse
Affiliation(s)
- Vivian Trinh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Cameron S. Malloy
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Tyler J. Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Aakanksha Gadh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
|
10
|
Pavlovic M, Ramiya Ramesh Babu HK, Djalali S, Vraneš M, Radonić V, Zeininger L. Facile Monitoring of Water Hardness Levels Using Responsive Complex Emulsions. Anal Chem 2021; 93:9390-9396. [PMID: 34212731 DOI: 10.1021/acs.analchem.1c00868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cationic content of water represents a major quality control parameter that needs to be followed by a rapid, on-site, and low-cost method. Herein, we report a novel method for a facile monitoring of the mineral content of drinking water by making use of responsive complex emulsions. The morphology of biphasic oil-in-water droplets solely depends on the balance of interfacial tensions, and we demonstrate that changes in the surfactant effectiveness, caused by variations in the mineral content inside the continuous phase, can be visualized by monitoring internal droplet shapes. An addition of metal cations can significantly influence the surfactant critical micelle concentrations and the surface excess values and therefore induce changes in the effectiveness of ionic surfactants, such as sodium dodecyl sulfate. The morphological response of Janus emulsions droplets was tracked via a simple microscopic setup. We observed that the extent of the droplet response was dependent on the salt concentration and valency, with divalent cations (responsive for water hardness), resulting in a more pronounced response. In this way, Ca2+ and Mg2+ levels could be quantitatively measured, which we showcased by determination of the mineral content of commercial water samples. The herein demonstrated device concept may provide a new alternative rapid monitoring of water hardness levels in a simple and cost-effective setup.
Collapse
Affiliation(s)
- Marko Pavlovic
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, Novi Sad 21000, Serbia
| | | | - Saveh Djalali
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Milan Vraneš
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Vasa Radonić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, Novi Sad 21000, Serbia
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids & Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| |
Collapse
|
11
|
Djalali S, Frank BD, Zeininger L. Responsive drop method: quantitative in situ determination of surfactant effectiveness using reconfigurable Janus emulsions. SOFT MATTER 2020; 16:10419-10424. [PMID: 33155583 DOI: 10.1039/d0sm01724h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Characterization of surfactant effectiveness and thus an evaluation of their performance in a wide range of emulsion technologies requires a precise determination of key parameters including their critical micelle concentrations as well as their ability to lower the surface tension at interfaces. In this study, we describe a new approach to quantify marginal variations in interfacial tension of surfactant stabilized fluid interfaces. The method is based on a unique chemical-morphological coupling inside bi-phasic oil-in-water Janus emulsions that undergo dynamic morphological transitions in response to changes in the surfactant type, concentration, ratio, and configuration. Variations in Janus droplet morphologies are readily monitored in situ using a simple side-view imaging setup, resulting in a fast, convenient, cost-effective, time-, and sample-saving technique for the characterization of classical surfactant systems. In addition, the reported method facilitates monitoring of triggered changes in surfactant effectiveness, e.g. invoked by external triggers, and thus proves particularly useful for the in situ analysis of stimuli-responsive surfactants and emulsions.
Collapse
Affiliation(s)
- Saveh Djalali
- Department of Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.
| | | | | |
Collapse
|
12
|
Balaj RV, Zarzar LD. Reconfigurable complex emulsions: Design, properties, and applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1063/5.0028606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rebecca V. Balaj
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Lauren D. Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|