1
|
Gong Y, Wu D, Yan X, Zhang Q, Zheng W, Li B, Chen H, Wang L. Unveiling the Antibacterial Mechanism of Gold Nanoparticles by Analyzing Bacterial Metabolism at the Molecular Level. Anal Chem 2024; 96:18865-18872. [PMID: 39532662 DOI: 10.1021/acs.analchem.4c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The threat of drug-resistant bacteria is challenging, and it is urgent to explore new antibiotics. Gold nanoparticles (AuNPs) are known to be a group of promising antibacterial agents for replacing conventional antibiotics. Nevertheless, their antibacterial mechanism remains to be elucidated. Herein, we directly observed the interaction between antibacterial AuNPs and bacteria at the molecular level using neutral desorption extractive electrospray ionization mass spectrometry (ND-EESI-MS). We monitored and analyzed the dynamic changes of bacterial metabolites in real time after AuNP treatment. Ten substances representing 3 major metabolic pathways, including protein and nucleic acid synthesis, energy metabolism, and quorum sensing, were identified, indicating that AuNPs may exert antibacterial effects through multiple mechanisms influencing bacterial metabolism and communication. This study deepens the understanding of the antibacterial mechanism of AuNPs and is insightful for designing and screening new antibacterial agents.
Collapse
Affiliation(s)
- Youhuan Gong
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Dong Wu
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Xiaojie Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Qian Zhang
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Huanwen Chen
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Le Wang
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| |
Collapse
|
2
|
Kapil K, Xu S, Lee I, Murata H, Kwon SJ, Dordick JS, Matyjaszewski K. Highly Sensitive Detection of Bacteria by Binder-Coupled Multifunctional Polymeric Dyes. Polymers (Basel) 2023; 15:2723. [PMID: 37376368 DOI: 10.3390/polym15122723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.
Collapse
Affiliation(s)
- Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Kar M, Anas M, Singh A, Basak A, Sen P, Mandal TK. Ion-/Thermo-Responsive fluorescent perylene-poly(ionic liquid) conjugates: One-pot microwave synthesis, self-aggregation and biological applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Proença PL, Carvalho LB, Campos EV, Fraceto LF. Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanoparticles in plants. Adv Colloid Interface Sci 2022; 305:102695. [PMID: 35598536 DOI: 10.1016/j.cis.2022.102695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 11/01/2022]
Abstract
The use of biodegradable nanopolymers in agriculture offers an excellent alternative for the efficient delivery of agrochemicals that promote plant protection and development. However, tracking of these systems inside plants requires complex probe tagging strategies. In addition to providing a basis for better understanding such nanostructures to optimize delivery system design, these probes allow monitoring the migration of nanoparticles through plant tissues, and determine accumulation sites. Thus, these probes are powerful tools that can be used to quantify and visualize nanoparticle accumulation in plant cells and tissues. This review is an overview of the methods involved in labeling nanocarriers, mainly based on polymeric matrices, for the delivery of nanoagrochemicals and the recent advances in this field.
Collapse
|
5
|
Guo X, Deng XC, Zhang YQ, Luo Q, Zhu XK, Song Y, Song EQ. Fe2+/Fe3+ Conversation-Mediated Magnetic Relaxation Switching for Detecting Staphylococcus Aureus in Blood and Abscess via Liposome Assisted Amplification. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wen J, Zhu Y, Liu J, He D. Smartphone-based surface plasmon resonance sensing platform for rapid detection of bacteria. RSC Adv 2022; 12:13045-13051. [PMID: 35520145 PMCID: PMC9053453 DOI: 10.1039/d2ra01788a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial infection poses severe threats to public health, and early rapid detection of the pathogen is critical for controlling bacterial infectious diseases. Current methods are commonly labor intensive, time consuming or dependent on lab-based equipment. In this study, we proposed a novel and practical method for bacterial detection based on smartphones using the surface plasmon resonance (SPR) phenomena of gold nanoparticles (AuNPs). The proposed smartphone-based SPR sensing method is achieved by utilizing color development that arises from the change in interparticle distance of AuNPs induced by bacterial lysate. The pictures of bacteria/AuNPs color development were captured, and their color signals were acquired through a commercial smartphone. The proposed method has a detection range between 2.44 × 105 and 1.25 × 108 cfu mL−1 and a detection limit of 8.81 × 104 cfu mL−1. Furthermore, this method has acceptable recoveries (between 85.7% and 95.4%) when measuring spiked real waters. Combining smartphone-based signal reading with AuNP-dependent color development also offers the following advantages: easy-to-use, real-time detection, free of complex equipment and low cost. In view of these features, this sensing platform would have widespread applications in the fields of medical, food, and environmental sciences. In this study, we propose a novel and practical method for bacterial detection based on smartphones using the surface plasmon resonance (SPR) phenomena of gold nanoparticles (AuNPs).![]()
Collapse
Affiliation(s)
- Junlin Wen
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yufan Zhu
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianbo Liu
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Daigui He
- College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic Guangzhou 510550 P. R. China +86-20-36552429 +86-20-36552429
| |
Collapse
|
7
|
Si Y, Grazon C, Clavier G, Audibert JF, Sclavi B, Méallet-Renault R. FRET-mediated quenching of BODIPY fluorescent nanoparticles by methylene blue and its application to bacterial imaging. Photochem Photobiol Sci 2022; 21:1249-1255. [PMID: 35428949 DOI: 10.1007/s43630-022-00215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
High resolution and a good signal to noise ratio are a requirement in cell imaging. However, after labelling with fluorescent entities, and after several washing steps, there is often an unwanted fluorescent background that reduces the images resolution. For this purpose, we developed an approach to remove the signal from extra-cellular fluorescent nanoparticles (FNPs) during bacteria imaging, without the need for any washing steps. Our idea is to use methylene blue to quench > 90% of the emission of BODIPY-based fluorescent polymer nanoparticle by a FRET process. This "Hide-and-Seek Game" approach offers a novel strategy to apply fluorescence quenching in bioimaging to improve image accuracy.
Collapse
Affiliation(s)
- Yang Si
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,Epigenetic Chemical Biology, CNRS UMR3523, Institut Pasteur, 28 Rue du Dr Roux, 75015, Paris, France
| | - Chloé Grazon
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.,University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33400, Talence, France
| | - Gilles Clavier
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | | | - Bianca Sclavi
- LBPA, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,LCQB, CNRS UMR 7238, Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.
| | - Rachel Méallet-Renault
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France. .,ISMO, Université Paris-Saclay, CNRS, 91405, Orsay, France.
| |
Collapse
|
8
|
Affiliation(s)
- Qingfu Ban
- College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Yan Li
- College of Chemistry and Chemical Engineering Yantai University Yantai P. R. China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Polymer Science and Engineering University of Science and Technology of China Hefei China
| |
Collapse
|
9
|
Wen J, Liu J, Wu J, He D. Rapid measurement of waterborne bacterial viability based on difunctional gold nanoprobe. RSC Adv 2022; 12:1675-1681. [PMID: 35425161 PMCID: PMC8978865 DOI: 10.1039/d1ra07287k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rapid measurement of waterborne bacterial viability is crucial for ensuring the safety of public health. Herein, we proposed a colorimetric assay for rapid measurement of waterborne bacterial viability based on a difunctional gold nanoprobe (dGNP). This versatile dGNP is composed of bacteria recognizing parts and signal indicating parts, and can generate color signals while recognizing bacterial suspensions of different viabilities. This dGNP-based colorimetric assay has a fast response and can be accomplished within 10 min. Moreover, the proposed colorimetric method is able to measure bacterial viability between 0% and 100%. The method can also measure the viability of other bacteria including Staphylococcus aureus, Shewanella oneidensis, and Escherichia coli O157H7. Furthermore, the proposed method has acceptable recovery (95.5–104.5%) in measuring bacteria-spiked real samples. This study offers a simple and effective method for the rapid measurement of bacterial viability and therefore should have application potential in medical diagnosis, food safety, and environmental monitoring. A colorimetric method is proposed to measure waterborne bacterial viability by using a difunctional gold nanoprobe that can generate color signals while recognizing bacterial suspensions of different viabilities.![]()
Collapse
Affiliation(s)
- Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianbo Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jialin Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Daigui He
- College of Artificial Intelligence, Guangdong Mechanical & Electrical Polytechnic Guangzhou 510550 P. R. China +86-20-36552429 +86-20-36552429
| |
Collapse
|
10
|
Bou S, Klymchenko AS, Collot M. Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. MATERIALS ADVANCES 2021; 2:3213-3233. [PMID: 34124681 PMCID: PMC8142673 DOI: 10.1039/d1ma00110h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/04/2021] [Indexed: 05/27/2023]
Abstract
Among biocompatible materials, block copolymers (BCPs) possess several advantages due to the control of their chemistry and the possibility of combining various blocks with defined properties. Consequently, BCPs drew considerable attention as biocompatible materials in the fields of drug delivery, medicine and bioimaging. Fluorescent labeling of BCPs quickly appeared to be a method of choice to image and track these materials in order to better understand the nature of their interactions with biological media. However, incorporating fluorescent markers (FM) into BCPs can appear tricky; we thus intend to help chemists in this endeavor by reviewing recent advances made in the last 10 years. With the choice of the FM being of prior importance, we first reviewed their photophysical properties and functionalities for optimal labeling and imaging. In the second part the different chemical approaches that have been used in the literature to fluorescently label BCPs have been reviewed. We also report and discuss relevant applications of fluorescent BCPs in bioimaging.
Collapse
Affiliation(s)
- Sophie Bou
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg 74 route du Rhin 67401 Illkirch-Graffenstaden France
| |
Collapse
|