1
|
Hu E, Liu Q, Qian Z, Zhong Q, He J, Xu S, Lu T, Li J, Chen T, Zhu W. Unveiling Mechanistic Insight into Accelerating Oxygen Molecule Activation by Oxygen Defects in Co 3O 4-x/g-C 3N 4 p-n Heterojunction for Efficient Photo-Assisted Uranium Extraction from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403105. [PMID: 38973107 DOI: 10.1002/smll.202403105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Photo-assisted uranium extraction from seawater (UES) is regarded as an efficient technique for uranium resource recovery, yet it currently faces many challenges, such as issues like biofouling resistance, low charge separation efficiency, slow carrier transfer, and a lack of active sites. Based on addressing the above challenges, a novel oxygen-deficient Co3O4-x/g-C3N4 p-n heterojunction is developed for efficient photo-assisted uranium extraction from seawater. Relying on the defect-coupling heterojunction synergistic effect, the redistribution of molecular charge density formed the built-in electric field as revealed by DFT calculations, significantly enhancing the separation efficiency of carriers and accelerating their migration rate. Notably, oxygen vacancies served as capture sites for oxygen, effectively promoting the generation of reactive oxygen species (ROS), thereby significantly improving the photo-assisted uranium extraction performance and antibacterial activity. Thus, under simulated sunlight irradiation with no sacrificial reagent added, Co3O4-x/g-C3N4 extracted a high uranium extraction amount of 1.08 mg g-1 from 25 L of natural seawater after 7 days, which is superior to most reported carbon nitride-based photocatalysts. This study elaborates on the important role of surface defects and inerface engineering strategies in enhancing photocatalytic performance, providing a new approach to the development and design of uranium extraction material from seawater.
Collapse
Affiliation(s)
- Enmin Hu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Qian Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Zishu Qian
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Qian Zhong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Junhui He
- Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang, Sichuan, 618000, P. R. China
| | - Shicheng Xu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Tianming Lu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Jin Li
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| |
Collapse
|
2
|
Maurya A, Marvaniya K, Dobariya P, Mane MV, Tothadi S, Patel K, Kushwaha S. Biomimetic Helical Hydrogen Bonded Organic Framework Membranes for Efficient Uranium Recovery from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306824. [PMID: 37975153 DOI: 10.1002/smll.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Inspired by the uranyl-imidazole interactions via nitrogen's (N's) of histidine residues in single helical protein assemblies with open framework geometry that allows through migration/coordination of metal ions. Here, preliminary components of a stable hydrogen-bonded organic framework (HOF) are designed to mimic the stable single helical open framework with imidazole residues available for Uranium (U) binding. The imidazolate-HOF (CSMCRI HOF2-S) is synthesized with solvent-directed H-bonding in 1D array and tuned hydrophobic CH-π interactions leading to single helix pattern having enhanced hydrolytic stability. De-solvation led CSMCRI HOF2-P with porous helical 1D channels are transformed in a freestanding thin film that showcased improved mass transfer and adsorption of uranyl carbonate. CSMCRI HOF2-P thin film can effectively extract ≈14.8 mg g-1 in 4 weeks period from natural seawater, with > 1.7 U/V (Uranium to Vanadium ratio) selectivity. This strategy can be extended for rational designing of hydrolytically stable, U selective HOFs to realize the massive potential of the blue economy toward sustainable energy.
Collapse
Affiliation(s)
- Ashish Maurya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karan Marvaniya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Dobariya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Ramanagaram, Bangalore, 562112, India
| | - Srinu Tothadi
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ketan Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shilpi Kushwaha
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Xiong J, Chen J, Li S, Cao J, Luo L, Duan X, Gao Q, Tong X, Luo F. pH-Dependent Dual-Mode Detection toward Uranium by a Zinc-Tetraphenylethylene Fluorescent Metal-Organic Framework. Inorg Chem 2023; 62:17634-17640. [PMID: 37682028 DOI: 10.1021/acs.inorgchem.3c02150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
An interpenetrated tetraphenylethylene-based fluorescent metal-organic framework (ECUT-180) with exceptional sensitivity, excellent selectivity, and fast response (less than 30 s) toward uranium was successfully prepared. Especially, in the prescence of uranyl, ECUT-180 displays significant fluorescence turn-on under pH 2-3, while fluorescence turn-off under pH 4-8. The corresponding detection limits were determined to be 2.92 ppb at pH 2 and 0.86 ppb at pH 8, both of which are lower than the average uranium content (3.3 ppb) in seawater. Mechanism investigation reveals that the fluorescence enhancement on the strong acid condition can be assigned to uranium adsorption, while the quenching is caused by the resonance energy transfer.
Collapse
Affiliation(s)
- Jianbo Xiong
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jie Chen
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Shunqing Li
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Jian Cao
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Le Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Xiongbin Duan
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Qiang Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xiaolan Tong
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
4
|
Ma C, Peng Y, Su M, Song G, Chen D. Fabrication of highly efficient hydroxyapatite microtubes for uranium sequestration and immobilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118417. [PMID: 37352631 DOI: 10.1016/j.jenvman.2023.118417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
Uranium-containing wastewater is a common by-product of uranium mining. Phosphate and phosphate minerals can interact with uranyl ions [U(VI)], impeding the migration of these ions by forming relatively stable uranium-containing crystalline phase(s). In this study, hydroxyapatite microtubes (HAP-T) were fabricated to sequester uranyl ions from simulated radioactive wastewater. HAP-T had excellent adsorption and stability properties; over 98.76% of U(VI) could be sequestrated by 0.25 g/L HAP-T within 5 min at pH = 4.0. The isotherms and kinetics data could be suitably reflected by the Freundlich and the pseudo second-order kinetic models, respectively. The maximum adsorption capacity of HAP-T was 356.42 mg/g. The adsorption ability of HAP-T for U(VI) was inhibited when Mg2+ or SO42- ions or fulvic acid (FA) substances existed in the simulated radioactive wastewater. The inhibition by FA was attributed to its negative charges, which caused competition between FA and HAP-T for uranium sequestration. The primary mechanisms of U(VI) sequestration by HAP-T were electrostatic interactions and surface complexation. The effectiveness of HAP-T, HAP-B (bio-hydroxyapatite synthesized from fish bone), and HAP-C (commercially available synthesized hydroxyapatite) for uranium immobilization was compared; HAP-T was more effective than HAP-B or HAP-C in immobilizing uranium. HAP-T, which has a micron-sized tubular structure, is likely less mobile in groundwater than are HAP-B and HAP-C, which have nanoscale granular structures. In conclusion, HAP-T can be used to sequester and immobilize uranyl ions.
Collapse
Affiliation(s)
- Chuqin Ma
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu'er Peng
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Vx-Na2TiOSiO4 MWNTs for uranium extraction from seawater and recovery from nuclear waste. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Ou M, Li W, Zhang Z, Xu X. β-Cyclodextrin and diatomite immobilized in sodium alginate biosorbent for selective uranium(VI) adsorption in aqueous solution. Int J Biol Macromol 2022; 222:2006-2016. [DOI: 10.1016/j.ijbiomac.2022.09.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
7
|
Polymeric nano-films with spatially arranged compartments for uranium recovery from seawater. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Zhang F, Liu Y, Ma KQ, Yan H, Luo Y, Wu FC, Yang CT, Hu S, Peng SM. Highly selective extraction of uranium from wastewater using amine-bridged diacetamide-functionalized silica. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129022. [PMID: 35500348 DOI: 10.1016/j.jhazmat.2022.129022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
A major environmental concern related to nuclear energy is wastewater contaminated with uranium, thus necessitating the development of pollutant-reducing materials with efficiency and effectiveness. Herein, highly selective mesoporous silicas functionalized with amine-bridged diacetamide ligands SBA-15-ABDMA were prepared. Different spectroscopy techniques were used to probe the chemical environment and reactivity of the chelating ligands before and after sorption. The results showed that the functionalized SBA-15-ABDMA had a strong affinity for uranium at low pH (pH = 3) with desirable sorption capacity (68.82 mg/g) and good reusability (> 5). It showed excellent separation performance with a high distribution coefficient (Kd,U > 105 mL/g) and separation factors SFU/Ln > 1000 at a pH of 3.5 in the presence of lanthanide nuclides, alkaline earth metal and transition metal ions. In particular, SiO2spheres-ABDMA was used as a column material, which achieved excellent recovery of U(VI) (> 98%) and good reusability for samples of simulated mining and nuclear industries wastewater. XPS and crystallography studies clearly illustrated the tridentate coordination mode of U(VI)/PEABDMA and the mechanism and origin behind the high selectivity for U.
Collapse
Affiliation(s)
- Fan Zhang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Yi Liu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Kai-Qiang Ma
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Heng Yan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Yue Luo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Feng-Cheng Wu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Chu-Ting Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China.
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China
| | - Shu-Ming Peng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, PR China.
| |
Collapse
|
9
|
Luo J, Chen J, Chen J, Ma J, Liu S, Tong X, Xiong J. Aluminum vanadate microspheres is a simple but effective material for uranium extraction: Performance and mechanism. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Kaushik A, Marvaniya K, Kulkarni Y, Bhatt D, Bhatt J, Mane M, Suresh E, Tothadi S, Patel K, Kushwaha S. Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Ou T, Wu Y, Han W, Kong L, Song G, Chen D, Su M. Synthesis of thickness-controllable polydopamine modified halloysite nanotubes (HNTs@PDA) for uranium (VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127208. [PMID: 34592591 DOI: 10.1016/j.jhazmat.2021.127208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Halloysite nanotubes (HNTs) are considered structurally promising adsorption materials, but their application is limited due to their poor native adsorption properties. Improving the adsorption capacity of HNTs for radioactive U(VI) is of great significance. By controlling the mass ratio of HNTs and dopamine (DA), composite adsorbents (HNTs@PDA) with different polydopamine (PDA) layer thicknesses were synthesized. Characterization of HNTs@PDA demonstrated that the original structure of the HNTs was maintained. Adsorption experiments verified that the adsorption capacity of HNTs@PDA for U(VI) was significantly improved. The effects of solution pH, temperature, and coexisting ions on the adsorption process were investigated. The removal efficiency was observed to be 75% after five repeated uses. The adsorption mechanism of U(VI) by HNTs@PDA can be explained by considering electrostatic interactions and the complexation of C-O, -NH- and C-N/CN in the PDA layer. This study provides some basic information for the application of HNTs for U(VI) removal.
Collapse
Affiliation(s)
- Tao Ou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuhua Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weixing Han
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Poly(amidoamine) dendrimer decorated dendritic fibrous nano-silica for efficient removal of uranium (VI). J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Zeng D, Yuan L, Zhang P, Wang L, Li Z, Wang Y, Liu Y, Shi W. Hydrolytically stable foamed HKUST-1@CMC composites realize high-efficient separation of U(VI). iScience 2021; 24:102982. [PMID: 34485864 PMCID: PMC8405966 DOI: 10.1016/j.isci.2021.102982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
HKUST-1@CMC (HK@CMC) composites that show good acid and alkali resistance and radiation resistance were successfully synthesized by introducing carboxymethyl cellulose (CMC) onto the surface of HKUST-1 using a foaming strategy. For the first time, the composites were explored as efficient adsorbents for U(VI) trapping from aqueous solution, with encouraging results of large adsorption capacity, fast adsorption kinetics, and desirable selectivity toward U(VI) over a series of competing ions. More importantly, a hybrid derivative film was successfully prepared for the dynamic adsorption of U(VI). The results show that ∼90% U(VI) can be removed when 45 mg L-1 U(VI) was passed through the film one time, and the removal percentage is still more than 80% even after four adsorption-desorption cycles, ranking one of the most practical U(VI) scavengers. This work offers new clues for application of the Metal-organic-framework-based materials in the separation of radionuclides from wastewater.
Collapse
Affiliation(s)
- Dejun Zeng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Zhang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zijie Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Kushwaha S, Patel K. Catalyst: Uranium Extraction from Seawater, a Paradigm Shift in Resource Recovery. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|