1
|
Pu S, Wei C, Zhang L, Liu R, Lv Y. Novel Pyrolysis-Assisted Cataluminescence System for Fingerprint Discrimination of Various Microplastics. Anal Chem 2025; 97:6804-6812. [PMID: 40108762 DOI: 10.1021/acs.analchem.5c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
As emerging pollutants, microplastics are pervasive in marine, terrestrial, and atmospheric environments as well as human tissues due to their small size, large specific surface area, and strong adsorption capacity. Consequently, developing efficient and rapid methods for identifying and differentiating microplastics is critical. Herein, a novel pyrolysis-assisted cataluminescence (CTL) sensor array was constructed, capable of efficiently distinguishing seven distinct types of microplastic samples. By pyrolyzing microplastics at high temperatures into small molecular compounds and introducing them into the CTL sensor array, which was based on 0-9% Eu3+-doped LaAlO3 as sensing materials, the system achieved a response time of no more than 2 s and an average recovery time of approximately 7 s. Through the integration of thermodynamic (signal-to-noise ratio) and kinetic (response time) factors from the CTL response curves, unique fingerprint patterns were generated, enabling high-throughput and rapid differentiation of multiple microplastics. Mechanistic studies revealed that the doping with Eu3+ ions played a dominant role in regulating the CTL signal. Different microplastic samples generated distinct types and concentrations of reaction intermediates during the pyrolysis-assisted CTL process, leading to variations in luminescence efficiency and thus forming unique fingerprint patterns. The proposed front-end pyrolysis combined with the back-end CTL method provided valuable insights for the rapid differentiation of structurally complex and low-reactive emerging pollutants, particularly nonvolatile solid samples, thereby expanding the application scope of CTL detection.
Collapse
Affiliation(s)
- Sirui Pu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chudong Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
2
|
Wei C, Chen C, Tang J, Liu R, Zhang L, Lv Y. Rapid Classification of OVOC Samples through a Dynamic Cataluminescence Sensor Coupled with a Code-Triggered Global Plasma-Activated System. Anal Chem 2025; 97:6249-6257. [PMID: 40066736 DOI: 10.1021/acs.analchem.5c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Integrated cataluminescence (CTL) sensing for both identification and quantification has become the focus in gas-sensing methods. With the development of an integrated circuit, inspiration from electronic automation provided a convenient approach for the application of CTL sensors. Here, a global dielectric barrier discharge plasma system supported by a digital code is raised for the process-oriented sampling and gaseous dynamic dual-route reaction for the rapid quantitative and qualitative analysis of oxidative volatile organic compounds (OVOCs). Coupled with the sensing material of Tb-doped yttrium aluminum garnet (Tb-YAG), the CTGPA-CTL system provided LODs of 8.80 ppm for methanol and 8.08 ppm for ethanol as typical targets, and 11 liquor-relative OVOCs were successfully identified in a blind sampling process. In practice, 4 main types of flavors of Chinese liquors were distinguished with obviously different features as judged by commercial artificial intelligence on CTL signals, providing a promising prospect of new types of virtual CTL sensor array for wider applications.
Collapse
Affiliation(s)
- Chudong Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cheng Chen
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Jiacheng Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Hu J, Song H, Zhang L, Lv Y. Recent progress of cataluminescence sensing based on gas-solid interfaces. Chem Commun (Camb) 2024; 60:11223-11236. [PMID: 39258331 DOI: 10.1039/d4cc03960b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cataluminescence (CTL) has emerged as a sensing transduction principle of gas-solid interface for constructing gas sensors that present fast response, high sensitivity, and online monitoring. It has thus been widely associated with the field of chemical analysis and catalytic science. Herein, the latest developments in CTL sensors are reviewed, and the status quo of CTL-based gas sensing systems is discussed. In particular, the basic principles and sensing systems of CTL are outlined, including performance enhancement strategies for specific targets and recognition methods for multiple targets. Moreover, the important applications of CTL sensors are listed and classified, including environmental pollutant monitoring, product quality control, clinical diagnosis, and evaluation of catalyst performance. Finally, based on abundant case reports, the current conundrums of CTL sensors are summarized and their future development trends are also put forward.
Collapse
Affiliation(s)
- Jiaxi Hu
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
- Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
4
|
Xiong S, Song H, Hu J, Xie X, Zhang L, Su Y, Lv Y. Heterothermic Cataluminescence Sensor System for Efficient Determination of Aldehyde Molecules. Anal Chem 2024; 96:11239-11246. [PMID: 38916976 DOI: 10.1021/acs.analchem.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A simple and stable cataluminescence (CTL) sensing platform based on a single sensing material for effective and rapid detection of aldehydes is an urgent need due to growing concerns for the environment, security, and health. Here, an effective and user-friendly identification method is successfully proposed to determine six common aldehydes of homologous compounds via a heterothermic CTL sensor system. Using Gd2O3 with excellent catalytic activity as a sensing material, thermodynamic and kinetic insights into the interactions between Gd2O3 and aldehydes at different temperatures were extracted and integrated to generate a unique constellation profile for each tested aldehyde, whereby achieving their effective and prompt determination. Moreover, the sensor system allowed the quantitative analysis of aldehydes with detection limits of 0.001, 0.009, 0.011, 0.011, 0.007, and 0.003 μg mL-1. Significantly, the sensor system had an excellent stability of up to 30 days. The CTL sensing platform was constructed based on a thermal regulation strategy that can provide a new approach to chemical agent identification.
Collapse
Affiliation(s)
- Suqin Xiong
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiaxi Hu
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaobin Xie
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical and Testing Center, Sichuan University, Chengdu 610064, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Zhang Q, Long X, Tang S, Jiang L, Ban Z, Chen Y, Zhang R. Enhanced Cataluminescence Sensor Based on SiO 2/MIL-53(Al) for Detecting Isobutylaldehyde. Molecules 2024; 29:3287. [PMID: 39064866 PMCID: PMC11279756 DOI: 10.3390/molecules29143287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A simple, rapid, and reliable method for detecting harmful gases is urgently required in environmental security fields. In this study, a highly effective cataluminescence sensor based on SiO2/MIL-53(Al) composites was developed to detect trace isobutylaldehyde. The sensor was designed using isobutylaldehyde to generate an interesting cataluminescence phenomenon in SiO2/MIL-53(Al). Under optimized conditions, a positive linear relationship was observed between the signal intensity of the cataluminescence and isobutylaldehyde concentration. The isobutylaldehyde concentration range of 1.55-310 ppm responded well to the sensing test, with an excellent correlation coefficient of 0.9996. The minimum detectable concentration signal-to-noise ratio (S/N = 3) was found to be 0.49 ppm. In addition, the sensor was effectively utilized for analyzing trace isobutylaldehyde; the analysis resulted in recoveries ranging from 83.4% to 105%, with relative standard deviations (RSDs) of 4.8% to 9.4%. Furthermore, the mechanism of cataluminescence between SiO2/MIL-53(Al) and isobutylaldehyde was explored using GC-MS analysis and density functional theory. We expect that this cataluminescence methodology will provide an approach for the environmental monitoring of isobutylaldehyde.
Collapse
Affiliation(s)
- Qianchun Zhang
- Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China; (X.L.); (S.T.); (L.J.); (Z.B.); (Y.C.)
| | - Xixi Long
- Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China; (X.L.); (S.T.); (L.J.); (Z.B.); (Y.C.)
| | - Shan Tang
- Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China; (X.L.); (S.T.); (L.J.); (Z.B.); (Y.C.)
| | - Li Jiang
- Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China; (X.L.); (S.T.); (L.J.); (Z.B.); (Y.C.)
| | - Zhaoru Ban
- Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China; (X.L.); (S.T.); (L.J.); (Z.B.); (Y.C.)
| | - Yanju Chen
- Key Laboratory for Analytical Science of Food and Environment Pollution of Qian Xi Nan, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China; (X.L.); (S.T.); (L.J.); (Z.B.); (Y.C.)
| | - Runkun Zhang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
6
|
Wei C, Yan S, Hu J, Sun M, Zhang L, Lv Y. Cataluminescence System Coupled with Vacuum Desorption-Sampling Methodology for Real-Time Ozone Sensing during the Self-Decomposition Process on Functional Boron Nitride. Anal Chem 2022; 94:14484-14491. [PMID: 36200973 DOI: 10.1021/acs.analchem.2c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The treatment and detection of ozone have been widely studied in recent decades with respect to toxicity and contamination, while the measurement method of ozone is relatively toneless. Fortunately, a new concept of the cataluminescence (CTL) sensor provides a scheme of real-time ozone sensing in a tiny system. Here, a novel CTL sensor system was specially developed with silica-hydroxyl functional boron nitride as the sensing material for rapid and sensitive ozone detection. Coupled with the construction of a pulse vacuum static sampling system, ozone on the surface of sensing material can be desorbed rapidly and can step into the next detection circulation in a few seconds. Based on the strong emission initiated by the transient of reactive oxygen species (ROS) including singlet oxygen, a trioxide group, and an oxygen radical, the detection limit of ozone could be optimized to be as low as 51.2 ppb. Besides, the sensor system exhibited remarkable anti-interference performance in which humidity changes and common VOCs do not disturb or weakly disturb ozone sensing, and the CTL mechanism of the multistep degradation process was further discussed on the basis of multiple pieces of experimental evidence and a DFT transient calculation. A real-time degradation-sensing module was further attached to the system to realize the functions of ozone decomposition and real-time monitoring.
Collapse
Affiliation(s)
- Chudong Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China
| | - Shuguang Yan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China
| | - Jiaxi Hu
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu610064, China.,Analytical & Testing Center, Sichuan University, Chengdu610064, China
| |
Collapse
|
7
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Hu J, Song H, Chen C, Zhang L, Sun M, Lv Y. Efficient Photoinduced Thermocatalytic Chemiluminescence System Based on the Z-Scheme Heterojunction Ag 3PO 4/Ag/Bi 4Ti 3O 12 for H 2S Sensing. Anal Chem 2022; 94:9415-9423. [PMID: 35726523 DOI: 10.1021/acs.analchem.2c01586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cataluminescence as a highly efficient gas transduction principle has attracted wide attention among research in environmental monitoring and clinical diagnosis with increasing awareness of human safety. Nowadays, the development of innovation sensing systems and the construction of the sensing mechanism to improve the analytical performance of compounds remain a major challenge. Herein, we construct an advanced photoinduced thermocatalytic chemiluminescence (PI-TC-CL) gas-sensing system via the introduction of a Z-scheme heterojunction Ag3PO4/Ag/Bi4Ti3O12 to achieve higher efficient detection of H2S. The unique electron transport path of the Z-scheme heterojunction and the LSPR effect of Ag nanoparticles fascinate the generation of the photoinduced electron-hole pair on the surface of catalysts when stimulated by LED lamps and slow down the recombination of electron-hole pairs under thermal conditions. Thus, based on the cooperative effect of the Z-scheme heterojunction AgPO/Ag/BTO and PI-TC-CL system, we have successfully established an efficient H2S CTL detection system, which has a response three times higher than that on the traditional CTL system and even 45 times higher than that on BTO and ranges among the best of the state-of-the-art CTL performance in H2S detection with the linear range of 0.095-8.87 μg mL-1 and a limit of detection of 0.0065 μg mL-1. Besides, to explore the gas-sensing mechanism, the synergetic effects of photoinduction and thermal catalysis are investigated thoroughly via conductivity and electrochemical experiments. This research provides a new perspective of engineering highly efficient catalysts and ingenious sensor systems through designing the nanostructure of materials and synergism catalytic mechanism.
Collapse
Affiliation(s)
- Jiaxi Hu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Cheng Chen
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|