1
|
Pytlarz M, Soufi G, Badillo-Ramírez I, Serioli L, Slipets R, Perner A, Boisen A. Improving Meropenem Quantification in a Compact SERS-Based Centrifugal Microfluidic Platform: Toward TDM of Antibiotics in ICU. Anal Chem 2025; 97:7888-7896. [PMID: 40132957 PMCID: PMC12004356 DOI: 10.1021/acs.analchem.4c06902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Infections are the leading causes of death, especially in intensive care units (ICUs), necessitating immediate and optimal antibiotic treatment with proper monitoring of the drug dosage. Present analytical techniques measuring antibiotic levels result in a long lag time for dose adjustments. Therefore, introducing versatile techniques that quickly quantify antibiotic levels in a patient's blood is essential. We developed a novel approach to advance the automation of label-free surface-enhanced Raman spectroscopy (SERS) in a centrifugal microfluidic setting (D-SERS device) to improve the quantification of meropenem (MER) in serum samples. The D-SERS device consists of a microfluidic disc cartridge, a spin motor, and an integrated Raman spectrometer module. In our assay method, we implemented a serum cleanup step, employing a monospin solid-phase extraction (ms-SPE) column, which was coupled with the D-SERS device. The MER label-free detection was performed on-disc by SERS scanning of a Ag nanopillar substrate integrated into the disc cartridge. We identified that coupling ms-SPE to the D-SERS device led to significant improvement in a signal-to-noise ratio and sensitivity. Chemometrics algorithms, such as partial least squares regression (PLSR), were implemented on a large data set for SERS analysis, allowing LoD and LoQ values of 12.12 and 36.37 μM, respectively. We compared the performance of our D-SERS device to that of a commercial Raman system, demonstrating its efficiency and reliability. Moreover, the D-SERS device was validated against HPLC employing samples from ICU patients, showing a good correlation (R2 = 0.8, p < 0.05) with a bias of 14.3 μM overestimation. The whole D-SERS system is compact and easy to operate, and results are obtained within 15-20 min, supporting its clinical feasibility for point-of-care therapeutic drug monitoring of antibiotics.
Collapse
Affiliation(s)
- Martyna
A. Pytlarz
- Center
for Intelligent Drug Delivery and Sensing Using Microcontainers and
Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Kongens 2800, Denmark
| | - Gohar Soufi
- Center
for Intelligent Drug Delivery and Sensing Using Microcontainers and
Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Kongens 2800, Denmark
| | - Isidro Badillo-Ramírez
- Center
for Intelligent Drug Delivery and Sensing Using Microcontainers and
Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Kongens 2800, Denmark
| | - Laura Serioli
- Center
for Intelligent Drug Delivery and Sensing Using Microcontainers and
Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Kongens 2800, Denmark
| | - Roman Slipets
- Center
for Intelligent Drug Delivery and Sensing Using Microcontainers and
Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Kongens 2800, Denmark
| | - Anders Perner
- Department
of Intensive Care, Copenhagen University
Hospital−Rigshospitalet, Copenhagen 2100, Denmark
- Department
of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anja Boisen
- Center
for Intelligent Drug Delivery and Sensing Using Microcontainers and
Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Kongens 2800, Denmark
| |
Collapse
|
2
|
Demishkevich EA, Stefanova SA, Zyubin AY, Rafalskiy VV, Zozulya AS, Evtifeev DO, Kundalevich AA, Tatarinova AA, Anoshin AA, Lyatun II, Samusev IG. Sers-based methodology for nanomolar methotrexate concentration detection for clinics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125801. [PMID: 40023615 DOI: 10.1016/j.saa.2025.125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/26/2024] [Accepted: 01/24/2025] [Indexed: 03/04/2025]
Abstract
The paper proposes a new rapid and reliable method for the detection of methotrexate (MTX) in human blood serum using truncated triangular silver nanoparticles (AgNP) deposited on quartz glass. The article describes the application of the SERS method and the synthesized surfaces for the detection of pure MTX, MTX molecules and its metabolites in patient serum. Using this approach, it was possible to detect methotrexate in controls up to 10-9 M concentration and in human plasma samples at clinical concentration up to 10-6 M. The developed methodology can be a fast and cheap alternative to traditional methods in clinics, such as high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
| | - Svetlana A Stefanova
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Andrey Y Zyubin
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Vladimir V Rafalskiy
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Aleksandr S Zozulya
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Denis O Evtifeev
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Anna A Kundalevich
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Alisa A Tatarinova
- Joint Institute for Nuclear Research, 6 Joliot-Curie str., Dubna, Russia 141980
| | - Aleksandr A Anoshin
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Ivan I Lyatun
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| | - Ilia G Samusev
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo str., Kaliningrad, Russia 236041
| |
Collapse
|
3
|
Yang B, Dai X, Chen S, Li C, Yan B. Application of Surface-Enhanced Raman Spectroscopy in Head and Neck Cancer Diagnosis. Anal Chem 2025; 97:3781-3798. [PMID: 39951652 DOI: 10.1021/acs.analchem.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a crucial analytical tool in the field of oncology, particularly presenting significant challenges for the diagnosis and treatment of head and neck cancer. This Review provides an overview of the current status and prospects of SERS applications, highlighting their profound impact on molecular biology-level diagnosis, tissue-level identification, HNC therapeutic monitoring, and integration with emerging technologies. The application of SERS for single-molecule assays such as epidermal growth factor receptors and PD-1/PD-L1, gene expression analysis, and tumor microenvironment characterization is also explored. This Review showcases the innovative applications of SERS in liquid biopsies such as high-throughput lateral flow analysis for ctDNA quantification and salivary diagnostics, which can offer rapid and highly sensitive assays suitable for immediate detection. At the tissue level, SERS enables cancer cell visualization and intraoperative tumor margin identification, enhancing surgical precision and decision-making. The role of SERS in radiotherapy, chemotherapy, and targeted therapy is examined along with its use in real-time pharmacokinetic studies to monitor treatment response. Furthermore, this Review delves into the synergistic relationship between SERS and artificial intelligence, encompassing machine learning and deep learning algorithms, marking the dawn of a new era in precision oncology. The integration of SERS with genomics, metabolomics, transcriptomics, proteomics, and single-cell omics at the multiomics level will revolutionize our comprehension and management of HNC. This Review offers an overview of the transformative impacts of SERS and examines future directions as well as challenges in this dynamic research field.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaobo Dai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuai Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bing Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Xu X, Xu D, Zhou X, Huang J, Gu S, Zhang Z. Implantable photoelectrochemical-therapeutic methotrexate monitoring system with dual-atomic docking strategy. Nat Commun 2025; 16:1747. [PMID: 39966460 PMCID: PMC11836052 DOI: 10.1038/s41467-025-57084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
The need for precise modulation of blood concentrations of pharmaceutical molecule, especially for high-risk drugs like Methotrexate (MTX), is underscored by the significant impact of individual variations on treatment efficacy. Achieving selective recognition of pharmaceutical molecules within the complex biological environment is a substantial challenge. To tackle this, we propose a synergistic atomic-molecular docking strategy that utilizes a hybrid-dual single-atom Fe1-Zn1 on a TiO2 photoelectrode to selectively bind to the carboxyl and aminopyrimidine groups of MTX respectively. By integrating this Fe1-Zn1-TiO2 photoelectrode with a microcomputer system, an implantable photoelectrochemical-therapeutic drug monitoring (PEC-TDM) system is developed for real-time, continuous in vivo MTX monitoring. This system facilitates personalized therapeutic decision-making and intelligent drug delivery for individualized cancer therapy, potentially revolutionizing oncological care and enhancing patient outcomes.
Collapse
Affiliation(s)
- Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jing Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Shiting Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
5
|
Liu H, Liu YW, Yang RY, Wu MJ, Yu ZW, Han JW, Zhang CZ, Huang PF, Liu AL, Liu MM. Therapeutic drug monitoring of methotrexate by disposable SPCE biosensor for personalized medicine. Anal Chim Acta 2025; 1335:343473. [PMID: 39643323 DOI: 10.1016/j.aca.2024.343473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Methotrexate (MTX) is widely used in clinical practice for the treatment of malignant tumors and autoimmune diseases. High-dose MTX has been shown to be an effective approach for treating various malignant tumors, but it is accompanied by numerous toxic side effects, necessitating therapeutic drug monitoring (TDM) for patients and timely "folinic acid rescue." High-performance liquid chromatography and fluorescent immunoassay (FIA) are currently used to detect MTX, but these methods are limited by complex sample preparation, time consumption, and high cost. Therefore, a simple, rapid, and cost-effective MTX measurement method is required. RESULTS We developed a flexible and inexpensive electrochemical sensor using a stearyl trimethyl ammonium bromide (STAB)-modified, screen-printed carbon electrode to directly detect MTX in human serum. Assay performance was validated via detection of MTX in spiked buffer. The sensor was capable of measuring MTX concentrations ranging from 0.01 to 1 μM and 1-1500 μM, with a limit of detection of 3.1 nM and a limit of quantitation of 3.5 nM. For the samples simulating combined medication, the sensor exhibited outstanding selectivity, in cross-reactivity, with the maximum response value of interferents reaching only 3.49 %. Additionally, the sensor shows reliable repeatability with a relative standard deviation of 3.8 % and remarkable stability. Recovery in human serum validated the clinical utility of the sensor in point-of-care testing conditions. The sensor's applicability to personal medicine was confirmed by detecting MTX blood concentration in patients with different diseases. The results obtained by the sensor were compared with those obtained by the FIA technique, a method commonly used in hospitals, showing a high level of consistency between both methods. SIGNIFICANCE To meet the requirements of personalized medicine for MTX-patients, we developed a disposable biosensor with wide detection range from 0.01 to 1 μM and 1-1500 μM. Owing to the effective enrichment of STAB, the electrochemical response was sensitive, selective, stable, and rapid. As per the clinical test results, our sensor has shown a high level of consistency with the FIA method, indicating its potential to replace FIA as a cost-effective platform for MTX-TDM.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yi-Wei Liu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ruo-Yu Yang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Mei-Juan Wu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zi-Wei Yu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jing-Wen Han
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Chen-Zhi Zhang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Pin-Fang Huang
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Meng-Meng Liu
- Department of Pharmacy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
6
|
Lai H, Wang X, Qi M, Huang H, Yu B. Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring. Molecules 2024; 30:15. [PMID: 39795073 PMCID: PMC11721930 DOI: 10.3390/molecules30010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Therapeutic drug monitoring (TDM) is pivotal for optimizing drug dosage regimens in individual patients, particularly for drugs with a narrow therapeutic index. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in TDM due to high sensitivity, non-destructive analysis, specific fingerprint spectrum, low sample consumption, simple operation, and low ongoing costs. Due to the rapid development of SERS for TDM, a review focusing on the analytical method is presented to better understand the trends. This review examines the latest advancements in SERS substrates and their applications in TDM, highlighting the innovations in substrate design that enhance detection sensitivity and selectivity. We discuss the challenges faced by SERS for TDM, such as substrate signal reproducibility and matrix interference from complex biological samples, and explore solutions like digital colloid-enhanced Raman spectroscopy, enrichment detection strategies, microfluidic SERS, tandem instrument technologies, and machine learning-enabled SERS. These advancements address the limitations of traditional SERS applications and improve analytical efficiency in TDM. Finally, conclusions and perspectives on future research directions are presented. The integration of SERS with emerging technologies presents a transformative approach to TDM, with the potential to significantly enhance personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Bingqiong Yu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (X.W.); (M.Q.); (H.H.)
| |
Collapse
|
7
|
Soufi G, Badillo-Ramírez I, Serioli L, Altaf Raja R, Schmiegelow K, Zor K, Boisen A. Solid-phase extraction coupled to automated centrifugal microfluidics SERS: Improving quantification of therapeutic drugs in human serum. Biosens Bioelectron 2024; 266:116725. [PMID: 39232434 DOI: 10.1016/j.bios.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful method in analytical chemistry, but its application in real-life medical settings has been limited due to technical challenges. In this work, we introduce an innovative approach that is meant to advance the automation of microfluidics SERS to improve reproducibility and label-free quantification of two widely used therapeutic drugs, methotrexate (MTX) and lamotrigine (LTG), in human serum. Our methodology involves a miniaturized solid-phase extraction (μ-SPE) method coupled to a centrifugal microfluidics disc with incorporated SERS substrates (CD-SERS). The CD-SERS platform enables simultaneous controlled sample wetting and accurate SERS mapping. Together with the assay we implemented a machine learning method based on Partial Least Squares Regression (PLSR) for robust data analysis and drug quantification. The results indicate that combining μ-SPE with CD-SERS (μ-SPE to CD-SERS) led to a substantial improvement in the signal-to-noise ratio compared to combining CD-SERS with ultrafiltration or protein precipitation. The PLSR model enabled us to obtain the limit of detection and quantification for MTX as 2.90 and 8.92 μM, respectively, and for LTG as 10.76 and 32.29 μM. We also validated our μ-SPE to CD-SERS method for MTX against HPLC and immunoassay (p-value <0.05), using patient samples undergoing MTX therapy. In addition, we achieved a satisfactory recovery rate (80%) for LTG when quantifying it in patient samples. Our results show the potential of this newly developed approach as a strategy for therapeutic drugs in point-of-care clinical settings and highlight the benefits of automating label-free SERS assays.
Collapse
Affiliation(s)
- Gohar Soufi
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark.
| | - Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Laura Serioli
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Raheel Altaf Raja
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, 2100, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, 2100, Denmark
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| |
Collapse
|
8
|
Dong P, Li K, Rowe DJ, Krauss TF, Wang Y. Protocol for Therapeutic Drug Monitoring Within the Clinical Range Using Mid-infrared Spectroscopy. Anal Chem 2024; 96:19021-19028. [PMID: 39557616 PMCID: PMC11618749 DOI: 10.1021/acs.analchem.4c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Therapeutic drug monitoring (TDM), which involves measuring drug levels in patients' body fluids, is an important procedure in clinical practice. However, the analysis technique currently used, i.e. liquid chromatography-tandem mass spectrometry (LC-MS/MS), is laboratory-based, so does not offer the short response time that is often required by clinicians. We suggest that techniques based on Fourier transform infrared spectroscopy (FTIR) offer a promising alternative for TDM. FTIR is rapid, highly specific and can be miniaturized for near-patient applications. The challenge, however, is that FTIR for TDM is limited by the strong mid-IR absorption of endogenous serum constituents. Here, we address this issue and introduce a versatile approach for removing the background of serum lipids, proteins and small water-soluble substances. Using phenytoin, an antiepileptic drug, as an example, we show that our approach enables FTIR to precisely quantify drug molecules in human serum at clinically relevant levels (10 μg/mL), providing an efficient analysis method for TDM. Beyond mid-IR spectroscopy, our study is applicable to other drug sensing techniques that suffer from the large background of serum samples.
Collapse
Affiliation(s)
- Pin Dong
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| | - Kezheng Li
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| | - David J. Rowe
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas F. Krauss
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| | - Yue Wang
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
9
|
He C, Liu F, Wang J, Bi X, Pan J, Xue W, Qian X, Chen Z, Ye J. When surface-enhanced Raman spectroscopy meets complex biofluids: A new representation strategy for reliable and comprehensive characterization. Anal Chim Acta 2024; 1312:342767. [PMID: 38834270 DOI: 10.1016/j.aca.2024.342767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) has gained increasing importance in molecular detection due to its high specificity and sensitivity. Complex biofluids (e.g., cell lysates and serums) typically contain large numbers of different bio-molecules with various concentrations, making it extremely challenging to be reliably and comprehensively characterized via conventional single SERS spectra due to uncontrollable electromagnetic hot spots and irregular molecular motions. The traditional approach of directly reading out the single SERS spectra or calculating the average of multiple spectra is less likely to take advantage of the full information of complex biofluid systems. RESULTS Herein, we propose to construct a spectral set with unordered multiple SERS spectra as a novel representation strategy to characterize full molecular information of complex biofluids. This new SERS representation not only contains details from each single spectra but captures the temporal/spatial distribution characteristics. To address the ordering-independent property of traditional chemometric methods (e.g., the Euclidean distance and the Pearson correlation coefficient), we introduce Wasserstein distance (WD) to quantitatively and comprehensively assess the quality of spectral sets on biofluids. WD performs its superiority for the quantitative assessment of the spectral sets. Additionally, WD benefits from its independence of the ordering of spectra in a spectral set, which is undesirable for traditional chemometric methods. With experiments on cell lysates and human serums, we successfully achieve the verification for the reproducibility between parallel samples, the uniformity at different positions in the same sample, the repeatability from multiple tests at one location of the same sample, and the cardinality effect of the spectral set. SERS spectral sets also manage to distinguish different classes of human serums and achieve higher accuracy than the traditional prostate-specific antigen in prostate cancer classification. SIGNIFICANCE The proposed SERS spectral set is a robust representation approach in accessing full information of biological samples compared to relying on a single or averaged spectra in terms of reproducibility, uniformity, repeatability, and cardinality effect. The application of WD further demonstrates the effectiveness and robustness of spectral sets in characterizing complex biofluid samples, which extends and consolidates the role of SERS.
Collapse
Affiliation(s)
- Chang He
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Jiayi Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China
| | - Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China
| | - Jiahua Pan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China
| | - Xiaohua Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China.
| | - Zhou Chen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China.
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, PR China; Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai PR China; Institute of Medical Robotics, Shanghai Jiao Tong University, 200240, Shanghai, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
| |
Collapse
|
10
|
Febrianti NQ, Tunggeng MGR, Ramadhany ID, Asri RM, Djabir YY, Permana AD. Validation of UV-Vis spectrophotometric and colorimetric methods to quantify methotrexate in plasma and rat skin tissue: Application to in vitro release, ex vivo and in vivo studies from dissolving microarray patch loaded pH-sensitive nanoparticle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124258. [PMID: 38599025 DOI: 10.1016/j.saa.2024.124258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
This research transformed MTX into smart nanoparticles that respond to the acidic conditions present in inflammation. These nanoparticles were then incorporated into a patch that dissolves over time, aiding their penetration. A method using UV-Vis spectrophotometry was validated to support the development of this new delivery system. This method was used to measure the quantity of MTX in the prepared patches in various scenarios: in laboratory solutions with pH 7.4 and pH 5.0, in skin tissue, and plasma. This validation was conducted in laboratory studies, tissue samples, and live subjects, adhering to established guidelines. The resulting calibration curve displayed a linear relationship (correlation coefficient 0.999) across these scenarios. The lowest quantity of MTX that could be accurately detected was 0.6 µg/mL in pH 7.4 solutions, 1.46 µg/mL in pH 5.0 solutions, 1.11 µg/mL in skin tissue, and 1.48 µg/mL in plasma. This validated method exhibited precision and accuracy and was not influenced by dilution effects. The method was effectively used to measure MTX levels in the developed patch in controlled lab settings and biological systems (in vitro, ex vivo, and in vivo). This showed consistent drug content in the patches, controlled release patterns over 24 h, and pharmacokinetic profiles spanning 48 h. However, additional analytical approaches were necessary for quantifying MTX in studies focused on the drug's effects on the body's functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
11
|
Liu C, Franceschini C, Weber S, Dib T, Liu P, Wu L, Farnesi E, Zhang WS, Sivakov V, Luppa PB, Popp J, Cialla-May D. SERS-based detection of the antibiotic ceftriaxone in spiked fresh plasma and microdialysate matrix by using silver-functionalized silicon nanowire substrates. Talanta 2024; 271:125697. [PMID: 38295449 DOI: 10.1016/j.talanta.2024.125697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Therapeutic drug monitoring (TDM) is an important tool in precision medicine as it allows estimating pharmacodynamic and pharmacokinetic effects of drugs in clinical settings. An accurate, fast and real-time determination of the drug concentrations in patients ensures fast decision-making processes at the bedside to optimize the clinical treatment. Surface-enhanced Raman spectroscopy (SERS), which is based on the application of metallic nanostructured substrates to amplify the inherent weak Raman signal, is a promising technique in medical research due to its molecular specificity and trace sensitivity accompanied with short detection times. Therefore, we developed a SERS-based detection scheme using silicon nanowires decorated with silver nanoparticles, fabricated by means of top-down etching combined with chemical deposition, to detect the antibiotic ceftriaxone (CRO) in spiked fresh plasma and microdialysis samples. We successfully detected CRO in both matrices with an LOD of 94 μM in protein-depleted fresh plasma and 1.4 μM in microdialysate.
Collapse
Affiliation(s)
- Chen Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Célia Franceschini
- UR Molecular Systems, Department of Chemistry, University of Liège, 4000, Liège, Belgium
| | - Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Tony Dib
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Poting Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Long Wu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University. Haikou 570228, China; Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Edoardo Farnesi
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Wen-Shu Zhang
- China Fire and Rescue Institute, Beijing, 102202, China
| | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar of the Technische Universität München, Ismaninger Str. 22, 81675, München, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany.
| |
Collapse
|
12
|
Ilchenko O, Pilhun Y, Kutsyk A, Slobodianiuk D, Goksel Y, Dumont E, Vaut L, Mazzoni C, Morelli L, Boisen S, Stergiou K, Aulin Y, Rindzevicius T, Andersen TE, Lassen M, Mundhada H, Jendresen CB, Philipsen PA, Hædersdal M, Boisen A. Optics miniaturization strategy for demanding Raman spectroscopy applications. Nat Commun 2024; 15:3049. [PMID: 38589380 PMCID: PMC11001912 DOI: 10.1038/s41467-024-47044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Raman spectroscopy provides non-destructive, label-free quantitative studies of chemical compositions at the microscale as used on NASA's Perseverance rover on Mars. Such capabilities come at the cost of high requirements for instrumentation. Here we present a centimeter-scale miniaturization of a Raman spectrometer using cheap non-stabilized laser diodes, densely packed optics, and non-cooled small sensors. The performance is comparable with expensive bulky research-grade Raman systems. It has excellent sensitivity, low power consumption, perfect wavenumber, intensity calibration, and 7 cm-1 resolution within the 400-4000 cm-1 range using a built-in reference. High performance and versatility are demonstrated in use cases including quantification of methanol in beverages, in-vivo Raman measurements of human skin, fermentation monitoring, chemical Raman mapping at sub-micrometer resolution, quantitative SERS mapping of the anti-cancer drug methotrexate and in-vitro bacteria identification. We foresee that the miniaturization will allow realization of super-compact Raman spectrometers for integration in smartphones and medical devices, democratizing Raman technology.
Collapse
Affiliation(s)
- Oleksii Ilchenko
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark.
- Lightnovo ApS, Birkerød, Denmark.
| | - Yurii Pilhun
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Andrii Kutsyk
- Lightnovo ApS, Birkerød, Denmark
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Technical University of Denmark, Department of Energy Conversion and Storage, Kgs. Lyngby, Denmark
| | - Denys Slobodianiuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institute of Magnetism, Kyiv, Ukraine
| | - Yaman Goksel
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Elodie Dumont
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lukas Vaut
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Chiara Mazzoni
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Lidia Morelli
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | | | | | | | - Tomas Rindzevicius
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| | - Thomas Emil Andersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | | | | | | | | | - Merete Hædersdal
- Department of Dermatology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Anja Boisen
- Technical University of Denmark, Department of Health Technology, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Adeniyi KO, Osmanaj B, Manavalan G, Mikkola JP, Berisha A, Tesfalidet S. Reagentless impedimetric immunosensor for monitoring of methotrexate in human blood serum using multiwalled carbon nanotube@polypyrrole/polytyramine film electrode. Talanta 2024; 268:125316. [PMID: 37864856 DOI: 10.1016/j.talanta.2023.125316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Ensuring effective monitoring of methotrexate (MTX) levels in the bloodstream of cancer patients undergoing high-dose methotrexate chemotherapy is crucial to prevent potentially harmful side effects. However, the absence of portable analytical devices suitable for point-of-care bedside monitoring has presented a significant obstacle to achieving real-time MTX monitoring. In this study, we developed an impedimetric immunosensor that doesn't require reagents for measuring MTX levels in undiluted human blood serum. This reagentless approach simplifies the assay process, enabling rapid and straightforward MTX quantification. The immunosensor transducer was fabricated by electrodepositing conductive network of porous multiwalled carbon nanotube@polypyrrole/polytyramine on screen-printed gold microchip electrode (SP-Au/MWCNT70@PPy-PTA). Polyclonal anti-MTX antibodies were immobilized on the film, acting as the immunorecognition element. Non-specific binding was prevented by blocking the transducer interface with denatured bovine serum albumin (dBSA) fibrils, resulting in SP-Au/MWCNT70@PPy-PTA/anti-MTXAb|dBSA film electrode. When MTX binds to the SP-Au/MWCNT70@PPy-PTA/anti-MTXAb|dBSA interface, the film conductance and electron transfer resistance changes. This conductivity attenuation allows for electrochemical impedimetric signal transduction without a redox-probe solution. The electrochemical impedance spectroscopy (EIS) results showed increased charge transfer resistance and phase angle as MTX concentrations increased. The SP-Au/MWCNT70@PPy-PTA/anti-MTXAb|dBSA demonstrated high sensitivity, with a linear response from 0.02 to 20.0 μM and a detection limit of 1.93 nM. The detection limit was 50 times lower than the intended safe level of MTX in human serum. The immunosensor exhibited minimal cross-reactivity with endogenous MTX analogs and serum proteins. The SP-Au/MWCNT70@PPy-PTA/anti-MTXAb|dBSA immunosensor presents a simple and rapid method for therapeutic drug monitoring compared to traditional immunoassay systems.
Collapse
Affiliation(s)
| | - Blerina Osmanaj
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden; Department of Chemistry, University of Prishtina, 10000, Prishtina, Republic of Kosovo
| | | | - Jyri-Pekka Mikkola
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden; Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, 20500, Finland
| | - Avni Berisha
- Department of Chemistry, University of Prishtina, 10000, Prishtina, Republic of Kosovo
| | | |
Collapse
|
14
|
He P, Dumont E, Göksel Y, Slipets R, Schmiegelow K, Chen Q, Zor K, Boisen A. SERS mapping combined with chemometrics, for accurate quantification of methotrexate from patient samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123536. [PMID: 37862841 DOI: 10.1016/j.saa.2023.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Despite the technological development in Raman instrumentation that has democratized access to 2D sample scanning capabilities, most quantitative surface-enhanced Raman scattering (SERS) analyses are still performed by only acquiring a single or a few spectra per sample and performing univariate data analysis on those. This strategy can however reach its limit when analytes need to be detected and quantified in complex matrices. In that case, surface fouling and competition between the target analyte and interfering compounds can impair univariate SERS data analysis, underlining the need for a more in-depth data analysis strategy based on exploiting of full-spectrum information. In this paper, a multivariate data analysis strategy was developed, for analyzing SERS maps of methotrexate (MTX) from patient samples, including all steps from baseline correction, selection of wavelength, and the relevant pixels in the map (image threshold segmentation), as well as quantitative model construction based on partial-least squares regression. Among the different baseline correction methods evaluated, standard normal variable transformation and Savitzky-Golay smoothing proved to be more suitable, while the genetic algorithm wavelength screening method was able to screen out MTX-related SERS spectral regions more efficiently. Importantly, with the here-developed process, it was sufficient to use MTX-spiked commercial serum when building quantitative models, removing the need to work with MTX-spiked patient samples, and consequently enabling time- and resource-saving quantitative analyses. Besides, the developed multivariate data analysis approach showed superior performances compared with univariate analysis, with 30 % improved sensitivity (detection limit of 5.7 µM), 25 % higher reproducibility (average relative standard variation of 15.6 %), and 110 % better accuracy (average prediction error of -10.5 %).
Collapse
Affiliation(s)
- Peihuan He
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Elodie Dumont
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark.
| | - Yaman Göksel
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Roman Slipets
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen 2100, Denmark
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark; BioInnovation Institute Foundation, Copenhagen N, 2200, Denmark
| |
Collapse
|
15
|
Badillo-Ramírez I, Janssen SAJ, Soufi G, Slipets R, Zór K, Boisen A. Label-free SERS assay combined with multivariate spectral data analysis for lamotrigine quantification in human serum. Mikrochim Acta 2023; 190:495. [PMID: 38036694 PMCID: PMC10689517 DOI: 10.1007/s00604-023-06085-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Considering the need for a more time and cost-effective method for lamotrigine (LTG) detection in clinics we developed a fast and robust label-free assay based on surface-enhanced Raman scattering (SERS) for LTG quantification from human serum. The optimization and application of the developed assay is presented showing the: (i) exploration of different methods for LTG separation from human serum; (ii) implementation of a molecular adsorption step on an ordered Au nanopillar SERS substrate; (iii) adaptation of a fast scanning of the SERS substrate, performed with a custom-built compact Raman spectrometer; and (iv) development of LTG quantification methods with univariate and multivariate spectral data analysis. Our results showed, for the first time, the SERS-based characterization of LTG and its label-free identification in human serum. We found that combining a miniaturized solid phase extraction, as sample pre-treatment with the SERS assay, and using a multivariate model is an optimal strategy for LTG quantification in human serum in a linear range from 9.5 to 75 μM, with LoD and LoQ of 3.2 μM and 9.5 μM, respectively, covering the suggested clinical therapeutic window. We also showed that the developed assay allowed for quantifying LTG from human serum in the presence of other drugs, thereby demonstrating the robustness of label-free SERS. The sensing approach and instrumentation can be further automated and integrated in devices that can advance the drug monitoring in real clinical settings.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark.
| | - Selina A J Janssen
- Molecular Biosensing for Medical Diagnostics (MBx), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Gohar Soufi
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Roman Slipets
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| |
Collapse
|
16
|
Sultana N, Thanil Singh C, Khan MR, Sen Sarma N. An optical sensing platform for the detection of anti-cancer drugs and their cytotoxicity screening using a highly selective phosphorene-based composite. NANOSCALE 2023; 15:17570-17582. [PMID: 37873646 DOI: 10.1039/d3nr03948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Monitoring therapeutic drugs and their elimination is crucial because they may cause severe side effects on the human body. Methotrexate (MTX) is a widely used anti-cancer drug, which is highly expensive, and the detection of unwanted overdoses of MTX using traditional procedures is time-consuming and involves complex instrumentation. In this work, we have developed a nanocomposite material using phosphorene, cystine, and gold (Ph-Cys-Au) that shows excellent optical properties. This nanocomposite can be used as an optical sensing platform for the detection of MTX in the range 0-260 μM. The synthesized sensing platform is very sensitive, selective, and cost-effective for the detection of MTX. Ph-Cys-Au can effectively detect MTX in aqueous media with a limit of detection (LOD) of about 0.0266 nM (for a linear range of 0-140 μM) and 0.0077 nM (for a linear range of 160-260 μM). The nanocomposite is equally selective for real samples, such as human blood serum (HBS) and artificial urine (AU) with a LOD of 0.0914 nM and 0.0734 nM, respectively. We have also determined the limit of quantification (LOQ); the LOQ values for the aqueous media were 0.0807 nM (for a linear range of 0-140 μM) and 0.0234 nM (for a linear range of 160-260 μM), whereas, the values for HBS and AU were around 0.2771 nM and 0.2226 nM, respectively. Moreover, the nanocomposite also provides a feasible platform for cytotoxicity screening in cancerous cells (Caco-2 cell lines) and non-cancerous cells (L-929 cell lines).
Collapse
Affiliation(s)
- Nasrin Sultana
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chingtham Thanil Singh
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mojibur R Khan
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Neelotpal Sen Sarma
- Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati-35, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
17
|
Zhu Z, Zhang Y, Xue J, Kong J, Huang L, Ouyang H, Fu Z, He Y. Fluorescent immunochromatographic test strip for therapeutic drug monitoring of methotrexate with high sensitivity and wide dynamic range. Mikrochim Acta 2023; 190:342. [PMID: 37540283 DOI: 10.1007/s00604-023-05917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
As a front-line chemotherapeutic drug for maintenance and consolidation therapy, methotrexate (MTX) has widely been applied to treat various tumors and some inflammatory diseases. However, because of its severe toxicity ascribed to low selectivity, it is necessary to monitor therapeutic drugs in high-dose MTX therapeutic regimens to ensure treatment safety. In this work, we developed a fluorescent immunochromatographic test strip (FITS) for monitoring MTX by employing time-resolved fluorescent microspheres as signal probes. With a competitive immunoassay mode, the FITS for MTX shows a super-wide dynamic range of 10 pM-10 μM, covering the entire clinical therapeutic concentration range of MTX. Therapeutic drug monitoring of MTX can be achieved within 7 min with high specificity, facilitating the timely rescue of drug poisoning led by high-dose MTX treatment. The method was employed for monitoring MTX in the spiked human serum, urine, and milk, showing acceptable recoveries ranging from 94.0 to 110.0%. The established FITS has been applied to MTX detection in serum obtained from high-dose MTX treatment. The results from FITS and enzyme multiplied immunoassay technique showed no significant difference, suggesting its reliability for usage in real biological samples. The device shows promise in point-of-care therapeutic drug monitoring for resource-limited countries and institutes, which significantly facilitates overcoming the lag time between sampling and results.
Collapse
Affiliation(s)
- Zhongjie Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Yu Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jinxia Xue
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Kong
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ling Huang
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Hui Ouyang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Yong He
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
18
|
Fabrication of water-soluble blue emitting molybdenum nanoclusters for sensitive detection of cancer drug methotrexate. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Huang H, Zhang Z, Li G. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application. BIOSENSORS 2022; 13:30. [PMID: 36671865 PMCID: PMC9855913 DOI: 10.3390/bios13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a kind of popular non-destructive and water-free interference analytical technology with fast response, excellent sensitivity and specificity to trace biotargets in biological samples. Recently, many researches have focused on the preparation of various magnetic nanoparticle-based SERS substrates for developing efficient bioanalytical methods, which greatly improved the selectivity and accuracy of the proposed SERS bioassays. There has been a rapid increase in the number of reports about magnetic SERS substrates in the past decade, and the number of related papers and citations have exceeded 500 and 2000, respectively. Moreover, most of the papers published since 2009 have been dedicated to analytical applications. In the paper, the recent advances in magnetic nanoparticle-based SERS substrates for bioanalysis were reviewed in detail based on their various morphologies, such as magnetic core-shell nanoparticles, magnetic core-satellite nanoparticles and non-spherical magnetic nanoparticles and their different functions, such as separation and enrichment, recognition and SERS tags. Moreover, the typical application progress on magnetic nanoparticle-based SERS substrates for bioanalysis of amino acids and protein, DNA and RNA sequences, cancer cells and related tumor biomarkers, etc., was summarized and introduced. Finally, the future trends and prospective for SERS bioanalysis by magnetic nanoparticle-based substrates were proposed based on the systematical study of typical and latest references. It is expected that this review would provide useful information and clues for the researchers with interest in SERS bioanalysis.
Collapse
Affiliation(s)
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Liu J, Fan W, Lv X, Wang C. Rapid Quantitative Detection of Voriconazole in Human Plasma Using Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:47634-47641. [PMID: 36591153 PMCID: PMC9798397 DOI: 10.1021/acsomega.2c04521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
There is an increasing demand for rapid detection techniques for monitoring the therapeutic concentration of voriconazole (VRC) in human biological fluids. Herein, a rapid and selective surface-enhanced Raman scatting method for point-of-care determination of VRC in human plasma was developed via a portable Raman spectrometer. This approach has enabled the quantification of the VRC spiked into human plasma at clinical relevant concentrations. A gold nanoparticle solution (Au sol) was used as the SERS substrate, and the agglomerating conditions on its sensitivity were optimized. The method involves the formation of hot spots, and the signal of VRC molecules adsorbed on the surface of the SERS hot spot was amplified by 105. The calibration curve was linear in the range of 0.02-10 ppm, with satisfactory repeatability. The limit of detection was as low as 12.3 ppb. The variation in VRC spectra over time on different substrates demonstrated good reproducibility. Notably, the salting-out extraction method developed in this study was rapid and suitable for the quantitation of drugs in biological samples. Compared with traditional methods, this approach allows for the point-of-care quantification of VRC directly in a complex matrix, which may open up new exciting opportunities for future use of the SERS technique in clinical applications.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Clinical Laboratory, The Second Affiliated Hospital of Shandong
First Medical University, Shandong First
Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, P. R. China
| | - Wufeng Fan
- Outpatient
Department, Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Xiaoxia Lv
- Central
Sterile Supply Department, Affiliated Hospital
of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Cuijuan Wang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| |
Collapse
|
21
|
Vásquez AF, Gómez LA, González Barrios A, Riaño-Pachón DM. Identification of Active Compounds against Melanoma Growth by Virtual Screening for Non-Classical Human DHFR Inhibitors. Int J Mol Sci 2022; 23:13946. [PMID: 36430425 PMCID: PMC9694616 DOI: 10.3390/ijms232213946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antifolates such as methotrexate (MTX) have been largely known as anticancer agents because of their role in blocking nucleic acid synthesis and cell proliferation. Their mechanism of action lies in their ability to inhibit enzymes involved in the folic acid cycle, especially human dihydrofolate reductase (hDHFR). However, most of them have a classical structure that has proven ineffective against melanoma, and, therefore, inhibitors with a non-classical lipophilic structure are increasingly becoming an attractive alternative to circumvent this clinical resistance. In this study, we conducted a protocol combining virtual screening (VS) and cell-based assays to identify new potential non-classical hDHFR inhibitors. Among 173 hit compounds identified (average logP = 3.68; average MW = 378.34 Da), two-herein, called C1 and C2-exhibited activity against melanoma cell lines B16 and A375 by MTT and Trypan-Blue assays. C1 showed cell growth arrest (39% and 56%) and C2 showed potent cytotoxic activity (77% and 51%) in a dose-dependent manner. The effects of C2 on A375 cell viability were greater than MTX (98% vs 60%) at equivalent concentrations and times. Our results indicate that the integrated in silico/in vitro approach provided a benchmark to identify novel promising non-classical DHFR inhibitors showing activity against melanoma cells.
Collapse
Affiliation(s)
- Andrés Felipe Vásquez
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Naturalius SAS, Bogotá 110221, Colombia
| | - Luis Alberto Gómez
- Laboratorio de Fisiología Molecular, Instituto Nacional de Salud, Bogotá 111321, Colombia
- Department of Physiological Sciences, School of Medicine, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Andrés González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), School of Chemical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Diego M. Riaño-Pachón
- Laboratório de Biologia Computacional, Evolutiva e de Sistemas, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba 05508-060, SP, Brazil
| |
Collapse
|
22
|
Pu Q, Wang K, Peng B, Chen K, Gong T, Liu F, Yang Q. In situ Preparation of a Phospholipid Gel Co-Loaded with Methotrexate and Dexamethasone for Synergistic Rheumatoid Arthritis Treatment. Int J Nanomedicine 2022; 17:5153-5162. [DOI: 10.2147/ijn.s384772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
23
|
Yang L, Ge J, Ma D, Tang J, Wang H, Li Z. MoS 2 quantum dots as fluorescent probe for methotrexate detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121443. [PMID: 35660152 DOI: 10.1016/j.saa.2022.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Herein, we developed a unique fluorescence biosensor for methotrexate assay based on MoS2 quantum dots, which were synthesized in one step using sodium molybdate and cysteine as raw materials. The fluorescence of MoS2 QDs could be quenched when encountered with methotrexate, which was attributed to the inner filter effect (IFE). Furthermore, this present IFE-based method showed the linearity between the MoS2 QDs fluorescence intensity and the methotrexate concentration in the range of 0.05-1 μM with the LOD of 42 nM. The practical applicability of this strategy was successfully demonstrated by detecting methotrexate in real samples. Results indicated that the proposed method could be a promising sensing platform for methotrexate analysis.
Collapse
Affiliation(s)
- Like Yang
- College of Chemistry, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jia Ge
- College of Chemistry, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Demiao Ma
- College of Chemistry, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jinlu Tang
- College of Chemistry, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Hongqi Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Henan Academy of Agricultural Science, PR China
| | - Zhaohui Li
- College of Chemistry, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
24
|
Magnetic Molecularly Imprinted Polymers for the Rapid and Selective Extraction and Detection of Methotrexatein Serum by HPLC-UV Analysis. Molecules 2022; 27:molecules27186084. [PMID: 36144817 PMCID: PMC9505160 DOI: 10.3390/molecules27186084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, novel selective recognition materials, namely magnetic molecularly imprinted polymers (MMIPs), were prepared. The recognition materials were used as pretreatment materials for magnetic molecularly imprinted solid-phase extraction (MSPE) to achieve the efficient adsorption, selective recognition, and rapid magnetic separation of methotrexate (MTX) in the patients' plasma. This method was combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) to achieve accurate and rapid detection of the plasma MTX concentration, providing a new method for the clinical detection and monitoring of the MTX concentration. The MMIPs for the selective adsorption of MTX were prepared by the sol-gel method. The materials were characterized by transmission electron microscopy, Fourier transform-infrared spectrometry, X-ray diffractometry, and X-ray photoelectron spectrometry. The MTX adsorption properties of the MMIPs were evaluated using static, dynamic, and selective adsorption experiments. On this basis, the extraction conditions were optimized systematically. The adsorption capacity of MMIPs for MTX was 39.56 mgg-1, the imprinting factor was 9.40, and the adsorption equilibrium time was 60 min. The optimal extraction conditions were as follows: the amount of MMIP was 100 mg, the loading time was 120 min, the leachate was 8:2 (v/v) water-methanol, the eluent was 4:1 (v/v) methanol-acetic acid, and the elution time was 60 min. MTX was linear in the range of 0.00005-0.25 mg mL-1, and the detection limit was 12.51 ng mL-1. The accuracy of the MSPE-HPLC-UV method for MTX detection was excellent, and the result was consistent with that of a drug concentration analyzer.
Collapse
|
25
|
Göksel Y, Dumont E, Slipets R, Rajendran ST, Sarikaya S, Thamdrup LHE, Schmiegelow K, Rindzevicius T, Zor K, Boisen A. Methotrexate Detection in Serum at Clinically Relevant Levels with Electrochemically Assisted SERS on a Benchtop, Custom Built Raman Spectrometer. ACS Sens 2022; 7:2358-2369. [PMID: 35848726 DOI: 10.1021/acssensors.2c01022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Therapeutic drug monitoring (TDM) is an essential clinical practice for optimizing drug dosing, thereby preventing adverse effects of drugs with a narrow therapeutic window, slow clearance, or high interperson pharmacokinetic variability. Monitoring methotrexate (MTX) during high-dose MTX (HD-MTX) therapy is necessary to avoid potentially fatal side effects caused by delayed elimination. Despite the efficacy of HD-MTX treatment, its clinical application in resource-limited settings is constrained due to the relatively high cost and time of analysis with conventional analysis methods. In this work, we developed (i) an electrochemically assisted surface-enhanced Raman spectroscopy (SERS) method for detecting MTX in human serum at a clinically relevant concentration range and (ii) a benchtop, Raman detection system with an integrated potentiostat, software, and data analysis unit that enables mapping of small areas of SERS substrates and quantitative SERS-based analysis. In the assay, by promoting electrostatic attraction between gold-coated nanopillar SERS substrates and MTX molecules in aqueous samples, a detection limit of 0.13 μM with a linear range of 0.43-2 μM was achieved in PBS. The implemented sample cleanup through gel filtration proved to be highly effective, resulting in a similar detection limit (0.55 μM) and linear range (1.81-5 μM) for both PBS and serum. The developed and optimized assay could also be used on the in-house built, Raman device. We showed that MTX detection can be carried out in less than 30 min with the Raman device, paving the way toward the TDM of MTX at the point-of-need and in resource-limited environments.
Collapse
Affiliation(s)
- Yaman Göksel
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Elodie Dumont
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Roman Slipets
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Sriram T Rajendran
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Sevde Sarikaya
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Lasse H E Thamdrup
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen 2100, Denmark
| | - Tomas Rindzevicius
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.,BioInnovation Institute Foundation, Copenhagen N 2200, Denmark
| |
Collapse
|
26
|
Preparation of Polyvinyl Imine Modified Carbon Quantum Dots and Their Application in Methotrexate Detection. Molecules 2022; 27:molecules27165254. [PMID: 36014493 PMCID: PMC9415630 DOI: 10.3390/molecules27165254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: A sensitive and selective fluorescence-detection platform based on carbon quantum dots (CQDs) was designed and developed for the determination of methotrexate (MTX), for the purpose of minimizing the possible toxic threat of MTX in clinics. Methods: The approach was prepared for the first time by a simple, hydrothermal method, making the synthesis and modification processes realized in one step using polyethyleneimine (PEI), and the proposed PEI-CQDs were obtained with high fluorescence quantum yield (38%). Results: MTX was found highly responsive and effective in quenching the fluorescence of the PEI-CQDs, due to a suggested fluorescence resonance energy transfer mechanism or inner-filter effect. The linear range of MTX was between 1 and 600 μmol/L under optimum conditions, with a detection limit (LOD) as low as 0.33 μmol/L. Furthermore, the fluorescent method was established for the MTX assay, and satisfactory results were acquired in real-sample determination. The average labeled quantity was 98.2%, and the average added standard recovery was 100.9%. Conclusions: The proposed PEI-CQDs showed a remarkable potential for broad applications in biological molecule determination and environmental analysis.
Collapse
|
27
|
Rashid MA, Muneer S, Alhamhoom Y, Islam N. Rapid Assay for the Therapeutic Drug Monitoring of Edoxaban. Biomolecules 2022; 12:biom12040590. [PMID: 35454179 PMCID: PMC9027065 DOI: 10.3390/biom12040590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Edoxaban is a direct oral anticoagulant (DOAC) that has been recently indicated for the treatment of pulmonary embolism (PE) in SARS-CoV-2 infections. Due to its pharmacokinetic variability and a narrow therapeutic index, the safe administration of the drug requires its therapeutic drug monitoring (TDM) in patients receiving the treatment. In this work, we present a label-free method for the TDM of edoxaban by surface enhanced Raman spectroscopy (SERS). The new method utilises the thiol chemistry of the drug to chemisorb its molecules onto a highly sensitive SERS substrate. This leads to the formation of efficient hotspots and a strong signal enhancement of the drug Raman bands, thus negating the need for a Raman reporter for its SERS quantification. The standard samples were run with a concentration range of 1.4 × 10−4 M to 10−12 M using a mobile phase comprising of methanol/acetonitrile (85:15 v/v) at 291 nm followed by the good linearity of R2 = 0.997. The lowest limit of quantification (LOQ) by the SERS method was experimentally determined to be 10−12 M, whereas LOQ for HPLC-UV was 4.5 × 10−7 M, respectively. The new method was used directly and in a simple HPLC-SERS assembly to detect the drug in aqueous solutions and in spiked human blood plasma down to 1 pM. Therefore, the SERS method has strong potential for the rapid screening of the drug at pathology labs and points of care.
Collapse
Affiliation(s)
- Md Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
- Correspondence:
| | - Saiqa Muneer
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Nazrul Islam
- Pharmacy Discipline, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
28
|
One-Step Preparation of S, N Co-Doped Carbon Quantum Dots for the Highly Sensitive and Simple Detection of Methotrexate. Molecules 2022; 27:molecules27072118. [PMID: 35408528 PMCID: PMC9000489 DOI: 10.3390/molecules27072118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Carbon quantum dots (CQDs) are a new class of carbon nanomaterials with favorable features, such as tunable luminescence, unique optical properties, water solubility, and lack of cytotoxicity; they are readily applied in biomedicine. (2) Methods: S, N co-doped CQDs were prepared to develop a highly selective and sensitive fluorescence technique for the detection of methotrexate (MTX). For this purpose, citric acid and thiourea were used as C, N, and S sources in a single-step hydrothermal process to prepare the S, N co-doped CQDs, which displayed remarkable fluorescence properties. (3) Results: Two optimal emissions were observed at the excitation/emission wavelengths of 320/425 nm, respectively. The two emissions were significantly quenched in the presence of MTX. Under optimal conditions, MTX was detected in the linear concentration range of 1–300 μmol/L, with the detection limit of 0.33 μmol/L. The sensing mechanism was due to the fact that the effect of the inner filter on MTX and S, N-CQDs causes fluorescence quenching. The contents of MTX in real medicine samples were evaluated with acceptable recoveries of 98–101%. (4) Conclusions: This approach has great potential for detecting MTX in pharmaceutical analysis.
Collapse
|