1
|
Han J, Duan Z, Liu C, Liu Y, Zhao X, Wang B, Cao S, Wu D. Hyperbranched Polymeric 19F MRI Contrast Agents with Long T2 Relaxation Time Based on β-Cyclodextrin and Phosphorycholine. Biomacromolecules 2024; 25:5860-5872. [PMID: 39113312 DOI: 10.1021/acs.biomac.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
19F magnetic resonance imaging (19F MRI) is gaining attention as an emerging diagnostic technology. Effective 19F MRI contrast agents (CAs) for in vivo applications require a long transverse (or spin-spin) relaxation time (T2), short longitudinal (or spin-lattice) relaxation time (T1), high fluorine content, and excellent biocompatibility. Here, we present a novel hyperbranched polymeric 19F MRI CA based on β-cyclodextrin and phosphorylcholine. The influence of the branching degree and fluorine content on T2 was thoroughly investigated. Results demonstrated a maximum fluorine content of 11.85% and a T2 of 612 ms. This hyperbranched polymeric 19F MRI CA exhibited both great biocompatibility against cells and organs of mice and high-performance imaging capabilities both in vitro and in vivo. The research provides positive insights into the synthesis strategies, topological design, and selection of fluorine tags for 19F MRI CAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Xinyu Zhao
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Shuaishuai Cao
- Shenzhen University General Hospital, Shenzhen 518055, China
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| |
Collapse
|
2
|
Wenzel JO, Jester F, Togni A, Rombach D. Hydroamination of Triisopropylsilyl Acetylene Sulfur Pentafluoride - a Bench-top Route to Pentafluorosulfanylated Enamines. Chemistry 2024; 30:e202304015. [PMID: 38079230 DOI: 10.1002/chem.202304015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Synthetic access to a variety of aliphatic and vinylic pentafluorosulfanylated building blocks remains a major challenge in contemporary organofluorine chemistry hampering its investigation in the context of medicinal chemistry, agrochemistry and functional materials. Herein, we report a bench-top protocol to access the virtually unknown class of α-SF5 -enamines under mild reaction conditions in good to excellent yields (up to 95 %). This reaction combines the protodesilylation of the commercially available precursor TASP with the in situ hydroamination of HC≡C-SF5 . The on-site use of highly toxic gases or corrosive reagents is avoided, making access to this motif applicable to a wide chemical audience. The excellent E-diastereoselectivity of this two-step cascade reaction is suggested to be the result of the convergence of the fast Z-/E- isomerization of a vinyl anion as well as the isomerization of the iminium ion. The remarkable thermal stability of these SF5 -enamines encourages further studies of their synthetic utility.
Collapse
Affiliation(s)
- Jonas O Wenzel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Fabian Jester
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| | - David Rombach
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093, Zürich, Switzerland
| |
Collapse
|
3
|
Deng M, Wilde M, Welch JT. N-(2-Tetrafluoro(trifluoromethyl)-λ 6-sulfanyl(CF 3SF 4)-ethyl) Amines: The Influence of the CF 3SF 4 Group on Lipophilicity and p Ka. J Org Chem 2023; 88:15639-15646. [PMID: 37934773 DOI: 10.1021/acs.joc.3c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A practical synthetic path for the preparation of trans-CF3SF4-substituted amines has been described. Primary and secondary amines bearing a variety of different functional groups including amino acids, cyclic amines, and nucleosides were prepared. The desired amines were synthesized under mild conditions. The influence of the CF3SF4-group on the pKa and log D of a standard amine was established. The unusual conformation of the trans-CF3SF4-substituted tosylate has been verified via its crystal structure.
Collapse
Affiliation(s)
- Muqian Deng
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Max Wilde
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - John T Welch
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
4
|
Mo Y, Huang C, Liu C, Duan Z, Liu J, Wu D. Recent Research Progress of 19 F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol Rapid Commun 2023; 44:e2200744. [PMID: 36512446 DOI: 10.1002/marc.202200744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Visualization of biomolecules, cells, and tissues, as well as metabolic processes in vivo is significant for studying the associated biological activities. Fluorine magnetic resonance imaging (19 F MRI) holds potential among various imaging technologies thanks to its negligible background signal and deep tissue penetration in vivo. To achieve detection on the targets with high resolution and accuracy, requirements of high-performance 19 F MRI probes are demanding. An ideal 19 F MRI probe is thought to have, first, fluorine tags with magnetically equivalent 19 F nuclei, second, high fluorine content, third, adequate fluorine nuclei mobility, as well as excellent water solubility or dispersity, but not limited to. This review summarizes the research progresses of 19 F MRI probes and mainly discusses the impacts of structures on in vitro and in vivo imaging performances. Additionally, the applications of 19 F MRI probes in ions sensing, molecular structures analysis, cells tracking, and in vivo diagnosis of disease lesions are also covered in this article. From authors' perspectives, this review is able to provide inspirations for relevant researchers on designing and synthesizing advanced 19 F MRI probes.
Collapse
Affiliation(s)
- Yongyi Mo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
5
|
Kadakia RT, Ryan RT, Cooke DJ, Que EL. An Fe complex for 19F magnetic resonance-based reversible redox sensing and multicolor imaging. Chem Sci 2023; 14:5099-5105. [PMID: 37206407 PMCID: PMC10189869 DOI: 10.1039/d2sc05222a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
We report a first-in-class responsive, pentafluorosulfanyl (-SF5)-tagged 19F MRI agent capable of reversibly detecting reducing environments via an FeII/III redox couple. In the FeIII form, the agent displays no 19F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to FeII with one equivalent of cysteine, the agent displays a robust 19F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The -SF5 tag in this agent enables 'multicolor imaging' in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19F MR signal of this -SF5 agent and a hypoxia-responsive agent containing a -CF3 group.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Raphael T Ryan
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Daniel J Cooke
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| |
Collapse
|
6
|
Starke L, Millward JM, Prinz C, Sherazi F, Waiczies H, Lippert C, Nazaré M, Paul F, Niendorf T, Waiczies S. First in vivo fluorine-19 magnetic resonance imaging of the multiple sclerosis drug siponimod. Theranostics 2023; 13:1217-1234. [PMID: 36923535 PMCID: PMC10008739 DOI: 10.7150/thno.77041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Theranostic imaging methods could greatly enhance our understanding of the distribution of CNS-acting drugs in individual patients. Fluorine-19 magnetic resonance imaging (19F MRI) offers the opportunity to localize and quantify fluorinated drugs non-invasively, without modifications and without the application of ionizing or other harmful radiation. Here we investigated siponimod, a sphingosine 1-phosphate (S1P) receptor antagonist indicated for secondary progressive multiple sclerosis (SPMS), to determine the feasibility of in vivo 19F MR imaging of a disease modifying drug. Methods: The 19F MR properties of siponimod were characterized using spectroscopic techniques. Four MRI methods were investigated to determine which was the most sensitive for 19F MR imaging of siponimod under biological conditions. We subsequently administered siponimod orally to 6 mice and acquired 19F MR spectra and images in vivo directly after administration, and in ex vivo tissues. Results: The 19F transverse relaxation time of siponimod was 381 ms when dissolved in dimethyl sulfoxide, and substantially reduced to 5 ms when combined with serum, and to 20 ms in ex vivo liver tissue. Ultrashort echo time (UTE) imaging was determined to be the most sensitive MRI technique for imaging siponimod in a biological context and was used to map the drug in vivo in the stomach and liver. Ex vivo images in the liver and brain showed an inhomogeneous distribution of siponimod in both organs. In the brain, siponimod accumulated predominantly in the cerebrum but not the cerebellum. No secondary 19F signals were detected from metabolites. From a translational perspective, we found that acquisitions done on a 3.0 T clinical MR scanner were 2.75 times more sensitive than acquisitions performed on a preclinical 9.4 T MR setup when taking changes in brain size across species into consideration and using equivalent relative spatial resolution. Conclusion: Siponimod can be imaged non-invasively using 19F UTE MRI in the form administered to MS patients, without modification. This study lays the groundwork for more extensive preclinical and clinical investigations. With the necessary technical development, 19F MRI has the potential to become a powerful theranostic tool for studying the time-course and distribution of CNS-acting drugs within the brain, especially during pathology.
Collapse
Affiliation(s)
- Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,SRH Fernhochschule - The Mobile University, Riedlingen, Germany
| | - Fatima Sherazi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Christoph Lippert
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
7
|
Chemistry of Pentafluorosulfanyl Derivatives and Related Analogs: From Synthesis to Applications. Chemistry 2022; 28:e202201491. [DOI: 10.1002/chem.202201491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 12/23/2022]
|
8
|
Sani M, Zanda M. Recent Advances in the Synthesis and Medicinal Chemistry of SF5 and SF4Cl Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1845-9291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThis short review covers the most important advances published in the literature during the last five years, concerning the synthesis, chemical modifications, and applications of SF5 and SF4Cl compounds in medicinal/bioorganic chemistry and materials science.1 Introduction2 Methods for Incorporation/Manipulation of SF4Cl/SF5 Groups2.1 Nonaromatic SF5 Compounds via Direct Pentafluorosulfanylation of Alkenes and Alkynes2.2 SF4Cl- and SF5-Aryl/Heteroaryl Derivatives3 Synthesis of SF5/SF4Cl/SF4-Substituted Small Molecules3.1 Heterocycles3.2 Amines and Amino Acids3.3 α-SF5 ketones3.4 Miscellaneous Alkyl-, Alkenyl-, and Aryl-SF5 Compounds4 Medicinal/Biological Applications4.1 Anticancer Compounds4.2 Antibacterial and Antiparasitic Compounds4.3 Central Nervous System4.4 Miscellaneous Biological Activity5 Materials Science Applications6 Conclusion
Collapse
|