1
|
Gooding JJ. Some of Our Favorite Papers from the First 10 Years of ACS Sensors. ACS Sens 2025; 10:1-3. [PMID: 39849956 DOI: 10.1021/acssensors.4c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- J Justin Gooding
- The University of New South Wales, Sydney, New South Wales 2033, Australia
| |
Collapse
|
2
|
Sharma G, Duarte S, Shen Q, Khemtong C. Analyses of mitochondrial metabolism in diseases: a review on 13C magnetic resonance tracers. RSC Adv 2024; 14:37871-37885. [PMID: 39606283 PMCID: PMC11600307 DOI: 10.1039/d4ra03605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases have become a global health concern due to their widespread prevalence and profound impact on life expectancy, healthcare expenditures, and the overall economy. Devising effective treatment strategies and management plans for these diseases requires an in-depth understanding of the pathophysiology of the metabolic abnormalities associated with each disease. Mitochondrial dysfunction is intricately linked to a wide range of metabolic abnormalities and is considered an important biomarker for diseases. However, assessing mitochondrial functions in viable tissues remains a challenging task, with measurements of oxygen consumption rate (OCR) and ATP production being the most widely accepted approaches for evaluating the health of mitochondria in tissues. Measurements of cellular metabolism using carbon-13 (or 13C) tracers have emerged as a viable method for characterizing mitochondrial metabolism in a variety of organelles ranging from cultured cells to humans. Information on metabolic activities and mitochondrial functions can be obtained from magnetic resonance (MR) analyses of 13C-labeled metabolites in tissues and organs of interest. Combining novel 13C tracer technologies with advanced analytical and imaging tools in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) offers the potential to detect metabolic abnormalities associated with mitochondrial dysfunction. These capabilities would enable accurate diagnosis of various metabolic diseases and facilitate the assessment of responses to therapeutic interventions, hence improving patient health and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center Dallas Texas USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Sergio Duarte
- Department of Surgery, University of Florida Gainesville FL USA
| | - Qingyang Shen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| |
Collapse
|
3
|
Dos Santos K, Bertho G, Baudin M, Giraud N. Glutamine: A key player in human metabolism as revealed by hyperpolarized magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:15-39. [PMID: 39645348 DOI: 10.1016/j.pnmrs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 12/09/2024]
Abstract
In recent years, there has been remarkable progress in the field of dissolution dynamic nuclear polarization (D-DNP). This method has shown significant potential for enhancing nuclear polarization by over 10,000 times, resulting in a substantial increase in sensitivity. The unprecedented signal enhancements achieved with D-DNP have opened new possibilities for in vitro analysis. This method enables the monitoring of structural and enzymatic kinetics with excellent time resolution at low concentrations. Furthermore, these advances can be straightforwardly translated to in vivo magnetic resonance imaging and magnetic resonance spectroscopy (MRI and MRS) experiments. D-DNP studies have used a range of 13C labeled molecules to gain deeper insights into the cellular metabolic pathways and disease hallmarks. Over the last 15 years, D-DNP has been used to analyze glutamine, a key player in the cellular metabolism, involved in many diseases including cancer. Glutamine is the most abundant amino acid in blood plasma and the major carrier of nitrogen, and it is converted to glutamate inside the cell, where the latter is the most abundant amino acid. It has been shown that increased glutamine consumption by cells is a hallmark of tumor cancer metabolism. In this review, we first highlight the significance of glutamine in metabolism, providing an in-depth description of its use at the cellular level as well as its specific roles in various organs. Next, we present a comprehensive overview of the principles of D-DNP. Finally, we review the state of the art in D-DNP glutamine analysis and its application in oncology, neurology, and perfusion marker studies.
Collapse
Affiliation(s)
- Karen Dos Santos
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Gildas Bertho
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Mathieu Baudin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université 45 rue d'Ulm, 75005 Paris, France
| | - Nicolas Giraud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
4
|
Ohliger MA. Hyperpolarized 13C Pyruvate MRI: An Important Window into Tumor Metabolism. Radiol Imaging Cancer 2024; 6:e240004. [PMID: 38426886 PMCID: PMC10988342 DOI: 10.1148/rycan.240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Michael A. Ohliger
- From the Department of Radiology and Biomedical Imaging, University
of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143
| |
Collapse
|
5
|
Pravdivtsev A, Buckenmaier K, Kempf N, Stevanato G, Scheffler K, Engelmann J, Plaumann M, Koerber R, Hövener JB, Theis T. LIGHT-SABRE Hyperpolarizes 1- 13C-Pyruvate Continuously without Magnetic Field Cycling. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:6744-6753. [PMID: 37081994 PMCID: PMC10108362 DOI: 10.1021/acs.jpcc.3c01128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Nuclear spin hyperpolarization enables real-time observation of metabolism and intermolecular interactions in vivo. 1-13C-pyruvate is the leading hyperpolarized tracer currently under evaluation in several clinical trials as a promising molecular imaging agent. Still, the quest for a simple, fast, and efficient hyperpolarization technique is ongoing. Here, we describe that continuous, weak irradiation in the audio-frequency range of the 13C spin at the 121 μT magnetic field (approximately twice Earth's field) enables spin order transfer from parahydrogen to 13C magnetization of 1-13C-pyruvate. These so-called LIGHT-SABRE pulses couple nuclear spin states of parahydrogen and pyruvate via the J-coupling network of reversibly exchanging Ir-complexes. Using ∼100% parahydrogen at ambient pressure, we polarized 51 mM 1-13C-pyruvate in the presence of 5.1 mM Ir-complex continuously and repeatedly to a polarization of 1.1% averaged over free and catalyst-bound pyruvate. The experiments were conducted at -8 °C, where almost exclusively bound pyruvate was observed, corresponding to an estimated 11% polarization on bound pyruvate. The obtained hyperpolarization levels closely match those obtained via SABRE-SHEATH under otherwise identical conditions. The creation of three different types of spin orders was observed: transverse 13C magnetization along the applied magnetic field, 13C z-magnetization along the main field B 0, and 13C-1H zz-spin order. With a superconducting quantum interference device (SQUID) for detection, we found that the generated spin orders result from 1H-13C J-coupling interactions, which are not visible even with our narrow linewidth below 0.3 Hz and at -8 °C.
Collapse
Affiliation(s)
- Andrey
N. Pravdivtsev
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical
Center Kiel, Kiel University, Am Botanischene Garten 14, 24118 Kiel, Germany
| | - Kai Buckenmaier
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Nicolas Kempf
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Gabriele Stevanato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- NMR
Signal Enhancement Group, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Klaus Scheffler
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
- Department
for Biomedical Magnetic Resonance, University
of Tübingen, 72076 Tübingen, Germany
| | - Joern Engelmann
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
| | - Markus Plaumann
- Otto-von-Guericke
University, Medical Faculty, Institute of
Biometry and Medical Informatics, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Rainer Koerber
- Department
‘Biosignals’, Physikalisch-Technische
Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| | - Jan-Bernd Hövener
- Section
Biomedical Imaging, Molecular Imaging North Competence Center (MOIN
CC), Department of Radiology and Neuroradiology, University Medical
Center Kiel, Kiel University, Am Botanischene Garten 14, 24118 Kiel, Germany
| | - Thomas Theis
- High-Field
Magnetic Resonance Center, Max Planck Institute
for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany
- Departments
of Chemistry and Physics, North Carolina
State University, Raleigh, North Carolina 27695, United States
- Joint
UNC-NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
6
|
Malloy CR, Sherry AD, Alger JR, Jin ES. Recent progress in analysis of intermediary metabolism by ex vivo 13 C NMR. NMR IN BIOMEDICINE 2023; 36:e4817. [PMID: 35997012 DOI: 10.1002/nbm.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced imaging technologies, large-scale metabolomics, and the measurement of gene transcripts or enzyme expression all enable investigations of intermediary metabolism in human patients. Complementary information about fluxes in individual metabolic pathways may be obtained by ex vivo 13 C NMR of blood or tissue biopsies. Simple molecules such as 13 C-labeled glucose are readily administered to patients prior to surgical biopsies, and 13 C-labeled glycerol is easily administered orally to outpatients. Here, we review recent progress in practical applications of 13 C NMR to study cancer biology, the response to oxidative stress, gluconeogenesis, triglyceride synthesis in patients, as well as new insights into compartmentation of metabolism in the cytosol. The technical aspects of obtaining the sample, preparing material for analysis, and acquiring the spectra are relatively simple. This approach enables convenient, valuable, and quantitative insights into intermediary metabolism in patients.
Collapse
Affiliation(s)
- Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Veterans Affairs North Texas Healthcare System, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Jeffry R Alger
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Grillet PE, Badiou S, Lambert K, Sutra T, Plawecki M, Raynaud de Mauverger E, Brun JF, Mercier J, Gouzi F, Cristol JP. Biomarkers of Redox Balance Adjusted to Exercise Intensity as a Useful Tool to Identify Patients at Risk of Muscle Disease through Exercise Test. Nutrients 2022; 14:1886. [PMID: 35565853 PMCID: PMC9105000 DOI: 10.3390/nu14091886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The screening of skeletal muscle diseases constitutes an unresolved challenge. Currently, exercise tests or plasmatic tests alone have shown limited performance in the screening of subjects with an increased risk of muscle oxidative metabolism impairment. Intensity-adjusted energy substrate levels of lactate (La), pyruvate (Pyr), β-hydroxybutyrate (BOH) and acetoacetate (AA) during a cardiopulmonary exercise test (CPET) could constitute alternative valid biomarkers to select "at-risk" patients, requiring the gold-standard diagnosis procedure through muscle biopsy. Thus, we aimed to test: (1) the validity of the V'O2-adjusted La, Pyr, BOH and AA during a CPET for the assessment of the muscle oxidative metabolism (exercise and mitochondrial respiration parameters); and (2) the discriminative value of the V'O2-adjusted energy and redox markers, as well as five other V'O2-adjusted TCA cycle-related metabolites, between healthy subjects, subjects with muscle complaints and muscle disease patients. Two hundred and thirty subjects with muscle complaints without diagnosis, nine patients with a diagnosed muscle disease and ten healthy subjects performed a CPET with blood assessments at rest, at the estimated 1st ventilatory threshold and at the maximal intensity. Twelve subjects with muscle complaints presenting a severe alteration of their profile underwent a muscle biopsy. The V'O2-adjusted plasma levels of La, Pyr, BOH and AA, and their respective ratios showed significant correlations with functional and muscle fiber mitochondrial respiration parameters. Differences in exercise V'O2-adjusted La/Pyr, BOH, AA and BOH/AA were observed between healthy subjects, subjects with muscle complaints without diagnosis and muscle disease patients. The energy substrate and redox blood profile of complaining subjects with severe exercise intolerance matched the blood profile of muscle disease patients. Adding five tricarboxylic acid cycle intermediates did not improve the discriminative value of the intensity-adjusted energy and redox markers. The V'O2-adjusted La, Pyr, BOH, AA and their respective ratios constitute valid muscle biomarkers that reveal similar blunted adaptations in muscle disease patients and in subjects with muscle complaints and severe exercise intolerance. A targeted metabolomic approach to improve the screening of "at-risk" patients is discussed.
Collapse
Affiliation(s)
- Pierre-Edouard Grillet
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Stéphanie Badiou
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Karen Lambert
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
| | - Thibault Sutra
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Maëlle Plawecki
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| | - Eric Raynaud de Mauverger
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Frédéric Brun
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jacques Mercier
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Fares Gouzi
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Physiology, University of Montpellier, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, INSERM U1046, CNRS UMR 9214, University of Montpellier, CHU Montpellier, 34295 Montpellier, France; (P.-E.G.); (S.B.); (K.L.); (T.S.); (M.P.); (E.R.d.M.); (J.-F.B.); (J.M.); (J.-P.C.)
- Department of Biochemistry and Hormonology, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|