1
|
Wu Y, Zhang Y, Qileng A, Bakker E. Self-Powered Potentiometric Sensor with Relational Operation Function to Capture Concentration Excursions. Anal Chem 2024; 96:18401-18407. [PMID: 39523720 DOI: 10.1021/acs.analchem.4c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Self-powered potentiometric sensors spontaneously respond to activity changes of target species without the need for an external power source. Here, a self-powered potentiometric sensing approach is described that may store concentration perturbations that occur before the sensor readout through a combination of capacitors and diodes. Two channels, termed "more than" and "less than" operators, are utilized as memory modules in the sensor circuit to record positive and negative concentration excursions, respectively. Each channel is constructed with a capacitor-diode pair in which each diode is connected to a capacitor in the opposite direction to prevent unwanted capacitor discharge. With this design, only potential variations that agree with the polarity of the diode may pass and be stored in the capacitor. A limitation of the principle is that the conductivity of the diode is very small if the voltage across it diminishes over time as it approaches the equilibrium value. To address this, the forward voltage is increased by about 1 V by switching from an initial Ag/AgCl reference electrode (RE) to a Zn/Zn2+ element. The device may be used to monitor whether a concentration excursion has occurred in the time leading up to the signal readout in a semiquantitative manner. The approach also differentiates pH excursions of different durations (20, 40, 60 min). As an example, four different pH excursions of 20 min duration were successfully distinguished in river water samples with amplitudes of 1 to 4 pH units relative to the case without pH perturbation.
Collapse
Affiliation(s)
- Yaotian Wu
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Yupu Zhang
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Aori Qileng
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
2
|
Huang Y, Zhong S, Gan L, Chen Y. Development of Machine Learning Models for Ion-Selective Electrode Cation Sensor Design. ACS ES&T ENGINEERING 2024; 4:1702-1711. [PMID: 39021402 PMCID: PMC11250033 DOI: 10.1021/acsestengg.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 07/20/2024]
Abstract
Polyvinyl chloride (PVC) membrane-based ion-selective electrode (ISE) sensors are common tools for water assessments, but their development relies on time-consuming and costly experimental investigations. To address this challenge, this study combines machine learning (ML), Morgan fingerprint, and Bayesian optimization technologies with experimental results to develop high-performance PVC-based ISE cation sensors. By using 1745 data sets collected from 20 years of literature, appropriate ML models are trained to enable accurate prediction and a deep understanding of the relationship between ISE components and sensor performance (R 2 = 0.75). Rapid ionophore screening is achieved using the Morgan fingerprint based on atomic groups derived from ML model interpretation. Bayesian optimization is then applied to identify optimal combinations of ISE materials with the potential to deliver desirable ISE sensor performance. Na+, Mg2+, and Al3+ sensors fabricated from Bayesian optimization results exhibit excellent Nernst slopes with less than 8.2% deviation from the ideal value and superb detection limits at 10-7 M level based on experimental validation results. This approach can potentially transform sensor development into a more time-efficient, cost-effective, and rational design process, guided by ML-based techniques.
Collapse
Affiliation(s)
- Yuankai Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shifa Zhong
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lan Gan
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Sailapu SK, Liébana S, Merino-Jimenez I, Esquivel JP, Sabaté N. Towards a REASSURED reality: A less-is-more electronic design strategy for self-powered glucose test. Biosens Bioelectron 2024; 243:115708. [PMID: 37862757 DOI: 10.1016/j.bios.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
Sensing strategies adopting minimal electronic systems help in realizing REASSURED diagnostic tests. However, the challenge in developing such strategies escalates with demand in power and electronics during pursuit of reliable and accurate sensing. Herein, we present an electronic design strategy using a smart strip, operating with power generated from 3.5 μL of serum sample, to reveal glucose concentration through a response preserved in a capacitor. Further, by integrating an NFC tag alongside the strip, we devised a self-powered glucose measuring card, mobile-glucocard (or mGlucocard) for retrieving this stored digital response using smartphone, enabling 'connected mobile-health diagnostics'. The response from our device relates linearly to glucose concentration offering a sensitivity of 11.3 mV/mM and good correlation (R = 0.974) with colorimetric reference method. Interestingly, the design strategy uses only four components - two resistors, diode, and capacitor - of simple architecture likely transferable to printed technologies to deliver advanced self-powered sustainable devices.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Susana Liébana
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Irene Merino-Jimenez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
4
|
Qileng A, Wu Y, Liu Y, Bakker E. Self-Powered Potentiometric Sensor Based on a Passive Signal Amplifier with Electronic Paper Display. Anal Chem 2023; 95:17444-17449. [PMID: 37978946 DOI: 10.1021/acs.analchem.3c04323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Self-powered potentiometric sensors are attractive because of their simple operation, low cost, fast response, and ability to be integrated with electronic components. Self-powered potentiometric sensors that give a direct colorimetric output are especially interesting, because no power supply is needed, which dramatically reduces waste. Recently reported work from our group using an electronic paper display, however, exhibits limitations, because the visualization of small pH changes is difficult. A self-powered ion-selective potentiometric sensor is introduced here that may amplify the e-paper pixel sensitivity by improving the self-powered circuit. The voltage is amplified by changing the circuit from incorporating parallel to incorporating serial capacitors. With three such capacitors, a greatly improved sensitivity is observed, amplifying the absorbance 3-fold. A portable device is realized that changes the position of the capacitors from parallel to serial through a simple mechanical sliding action. As a result, the pH information on the sample is more easily visualized with a pH uncertainty of about 0.1 when comparing the e-paper output to a color card.
Collapse
Affiliation(s)
- Aori Qileng
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yaotian Wu
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
5
|
McLamore ES, Datta SPA. A Connected World: System-Level Support Through Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:285-309. [PMID: 37018797 DOI: 10.1146/annurev-anchem-100322-040914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The goal of protecting the health of future generations is a blueprint for future biosensor design. Systems-level decision support requires that biosensors provide meaningful service to society. In this review, we summarize recent developments in cyber physical systems and biosensors connected with decision support. We identify key processes and practices that may guide the establishment of connections between user needs and biosensor engineering using an informatics approach. We call for data science and decision science to be formally connected with sensor science for understanding system complexity and realizing the ambition of biosensors-as-a-service. This review calls for a focus on quality of service early in the design process as a means to improve the meaningful value of a given biosensor. We close by noting that technology development, including biosensors and decision support systems, is a cautionary tale. The economics of scale govern the success, or failure, of any biosensor system.
Collapse
Affiliation(s)
- Eric S McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, South Carolina, USA;
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Shoumen P A Datta
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Wu Y, Bakker E. Self-Powered Signal Transduction of Ion-Selective Electrodes to an Electronic Paper Display. ACS Sens 2022; 7:3201-3207. [PMID: 36251606 DOI: 10.1021/acssensors.2c01826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mobile integrated electrochemical sensors normally require a power supply for operation. Unfortunately, the practice of discarding batteries associated with these devices runs counter to our desire for a sustainable world. Self-powered sensing concepts that draw the energy directly from the measurement itself would overcome this limitation. Potentiometric sensors for the measurement of pH, many electrolytes, and gases are ubiquitous in analytical practice. However, in potentiometry, the voltage is acquired in the absence of current flow, making it seemingly impossible to draw power. Fortunately, it has been recently established that transient currents may be tolerated across potentiometric measurement cells to charge a capacitive or electrochromic element such as Prussian blue integrated in the measurement cell and whose absorbance then directly follows the potential changes in a reversible manner. We have shown here that commercial electronic paper (e-paper), widely used to make electronic ink and ebook readers, can directly be driven by a potentiometric measurement cell in a reversible manner at mild potentials of >100 mV typical for such sensors. The capacitance of the e-paper pixel studied here was found to be 0.53 μF mm-2, 30 times smaller than that of Prussian blue films. The colorimetric absorbance of the e-paper was also more stable (observed drift over 2 h corresponding to 0.76 mV h-1) and reproducible (corresponding to 1 mV standard deviation). The e-paper pixel was directly driven by a polymeric pH electrode as a model system. Choosing a basic inner solution (pH 12.9) behind the membrane gave sufficiently positive cell potentials for driving visible absorbance change in a sample pH range of 4-10, while a more acidic pH of 3.4 and alternating the connections to the e-paper were more suited for more basic samples of pH > 10. This convenient and cost-effective approach makes it possible to directly drive an optical display from the potentiometric measurement itself and should be suitable for moderate sensing membrane resistances of less than about 100 kΩ, depending on the area of the chosen pixel.
Collapse
Affiliation(s)
- Yaotian Wu
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211Geneva, Switzerland
| |
Collapse
|
7
|
Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203690. [PMID: 35981885 PMCID: PMC9561779 DOI: 10.1002/advs.202203690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Many healthcare and environmental monitoring devices use electrochemical techniques to detect and quantify analytes. With sensors progressively becoming smaller-particularly in point-of-care (POC) devices and wearable platforms-it creates the opportunity to operate them using less energy than their predecessors. In fact, they may require so little power that can be extracted from the analyzed fluids themselves, for example, blood or sweat in case of physiological sensors and sources like river water in the case of environmental monitoring. Self-powered electrochemical sensors (SPES) can generate a response by utilizing the available chemical species in the analyzed liquid sample. Though SPESs generate relatively low power, capable devices can be engineered by combining suitable reactions, miniaturized cell designs, and effective sensing approaches for deciphering analyte information. This review details various such sensing and engineering approaches adopted in different categories of SPES systems that solely use the power available in liquid sample for their operation. Specifically, the categories discussed in this review cover enzyme-based systems, battery-based systems, and ion-selective electrode-based systems. The review details the benefits and drawbacks with these approaches, as well as prospects of and challenges to accomplishing them.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| |
Collapse
|
8
|
Saha A, Yermembetova A, Mi Y, Gopalakrishnan S, Sedaghat S, Waimin J, Wang P, Glassmaker N, Mousoulis C, Raghunathan N, Bagchi S, Rahimi R, Shakouri A, Wei A, Alam MA. Temperature Self-Calibration of Always-On, Field-Deployed Ion-Selective Electrodes Based on Differential Voltage Measurement. ACS Sens 2022; 7:2661-2670. [PMID: 36074898 DOI: 10.1021/acssensors.2c01163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Originally developed for use in controlled laboratory settings, potentiometric ion-selective electrode (ISE) sensors have recently been deployed for continuous, in situ measurement of analyte concentration in agricultural (e.g., nitrate), environmental (e.g., ocean acidification), industrial (e.g., wastewater), and health-care sectors (e.g., sweat sensors). However, due to uncontrolled temperature and lack of frequent calibration in these field applications, it has been difficult to achieve accuracy comparable to the laboratory setting. In this paper, we propose a novel temperature self-calibration method where the ISE sensors can serve as their own thermometer and therefore precisely measure the analyte concentration in the field condition by compensating for the temperature variations. We validate the method with controlled experiments using pH and nitrate ISEs, which use the Nernst principle for electrochemical sensing. We show that, using temperature self-calibration, pH and nitrate can be measured within 0.3% and 5% of the true concentration, respectively, under varying concentrations and temperature conditions. Moreover, we perform a field study to continuously monitor the nitrate concentration of an agricultural field over a period of 6 days. Our temperature self-calibration approach determines the nitrate concentration within 4% of the ground truth measured by laboratory-based high-precision nitrate sensors. Our approach is general and would allow battery-free temperature-corrected analyte measurement for all Nernst principle-based sensors being deployed as wearable or implantable sensors.
Collapse
Affiliation(s)
- Ajanta Saha
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aiganym Yermembetova
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ye Mi
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sarath Gopalakrishnan
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sotoudeh Sedaghat
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jose Waimin
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pengcheng Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicholas Glassmaker
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Charilaos Mousoulis
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nithin Raghunathan
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Saurabh Bagchi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ali Shakouri
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Wei
- Department of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammad A Alam
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Wu Y, Bakker E. Direct Energy Transfer from a pH Glass Electrode to a Liquid Crystal Display. Anal Chem 2022; 94:10408-10414. [PMID: 35818788 DOI: 10.1021/acs.analchem.2c01557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-powered sensors are attractive because the lack of a dedicated battery makes them environmentally friendly and allows them to be more easily miniaturized. Unfortunately, the development of self-powered potentiometric sensors is challenging because only very limited energy can be harvested from this measurement principle. For the first time, the potential of a high impedance glass pH electrode (130 M Ω) is shown here to be directly read out optically. This is accomplished by a liquid crystal display (LCD) as the electrochromic transducer, which changes its transmission upon imposing an external voltage in the range of 2-3 V. Importantly, owing to its low capacitance of about 50 pF, this process requires a very small transient charge on the order of 100 pC, which may be spontaneously imposable even across pH glass electrodes. For the LCD to be turned on, the cell voltage is boosted by additional Zn2+/Zn elements placed in series. The LCD is found to give a time-dependent absorbance decrease, which is mitigated by adding a high resistance element to attenuate the associated decay. The approach gives repeatable LCD absorbance values that allows one to directly visualize pH with a precision of about 0.01 pH units. The absorbance value depends inversely on pH in a much wider range (pH 1-13) than what is normally observed with optical sensors while based on the same underlying measurement as a potentiometric pH probe.
Collapse
Affiliation(s)
- Yaotian Wu
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva, Switzerland
| |
Collapse
|