1
|
Wang P, Ma Y, Rao X, Luo Q, Xiao X, Wang T, Long F. Kaempferol targets Src to exert its chemopreventive effects on mammary tumorigenesis via regulation of the PI3K/AKT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156701. [PMID: 40220416 DOI: 10.1016/j.phymed.2025.156701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Breast cancer (BC) is a prevalent malignancy that poses significant risks to the health of women worldwide. The incidence and mortality rates of BC continue to be high, despite improvements in diagnosis and treatment, indicating a need for novel prevention strategies. Kaempferol (KAM) is a common dietary flavonoid with known antitumour properties, but its role in the chemoprevention of BC and the underlying mechanisms largely unexplored. PURPOSE This study aimed to evaluate the chemopreventive effects of KAM on carcinogen-induced BC in vivo and in vitro and to elucidate the underlying molecular mechanisms. METHODS In this study, we used an N-methyl-N-nitrosourea (NMU)-induced rat model of BC and 17β-oestradiol (E2)-treated MCF-10A cells to evaluate the chemopreventive effects of KAM on mammary tumorigenesis. The antioxidant capacity of KAM was assessed by measuring oxidative damage marker levels and antioxidant enzyme expression. Flow cytometry and Hoechst 33258 staining were utilized to analyse cell cycle distribution and apoptosis. The core target of KAM was identified by network pharmacology and validated by molecular docking, MD simulation, CESTA, and BLI. KEGG enrichment analysis, molecular biology tests and the application of specific protein inhibitors were conducted to elucidate the molecular mechanisms modulated by KAM. RESULTS In vivo, KAM inhibited the progression of mammary tumours and delayed pathological changes in the morphological structure of mammary gland cells to varying degrees. In vitro, KAM reduced cell viability, migration, and anchorage-independent growth while triggering cell cycle arrest and apoptosis in E2-treated MCF-10A cells. Furthermore, KAM increased cellular antioxidant capacity and attenuated E2-induced oxidative stress. Mechanistically, KAM directly interacted with Src and inhibited its phosphorylation, thus leading to PI3K/AKT pathway inhibition. Notably, the inhibition of E2-induced cell migration and anchorage-independent growth in vitro by Src- or PI3K/AKT pathway-specific inhibitors was not further enhanced when the cells were cultured with KAM. CONCLUSION In summary, KAM targets the Src-mediated PI3K/AKT pathway to reduce oxidative stress and facilitate apoptosis and cell cycle arrest, thereby inhibiting mammary tumorigenesis. Our study is the first to identify Src kinase as a direct target of KAM in mammary tumorigenesis. These findings give significant perspectives on the potential application of KAM in BC chemoprevention.
Collapse
Affiliation(s)
- Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Women's and Children's Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China
| | - Yu Ma
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Xiaohui Rao
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Qianwen Luo
- Laboratory Medicine Center, Sichuan Provincial Women's and Children's Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China
| | - Xiao Xiao
- Laboratory Medicine Center, Sichuan Provincial Women's and Children's Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610042, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Women's and Children's Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610032, China.
| |
Collapse
|
2
|
Stanley CV, Xiao Y, Ling T, Li DS, Chen P. Opto-digital molecular analytics. Chem Soc Rev 2025; 54:3557-3577. [PMID: 40035639 DOI: 10.1039/d5cs00023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In contrast to conventional ensemble-average-based methods, opto-digital molecular analytic approaches digitize detection by physically partitioning individual detection events into discrete compartments or directly locating and analyzing the signals from single molecules. The sensitivity can be enhanced by signal amplification reactions, signal enhancement interactions, labelling by strong signal emitters, advanced optics, image processing, and machine learning, while specificity can be improved by designing target-selective probes and profiling molecular dynamics. With the capabilities to attain a limit of detection several orders lower than the conventional methods, reveal intrinsic molecular information, and achieve multiplexed analysis using a small-volume sample, the emerging opto-digital molecular analytics may be revolutionarily instrumental to clinical diagnosis, molecular chemistry and science, drug discovery, and environment monitoring. In this article, we provide a comprehensive review of the recent advances, offer insights into the underlying mechanisms, give comparative discussions on different strategies, and discuss the current challenges and future possibilities.
Collapse
Affiliation(s)
- Chelsea Violita Stanley
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Yi Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| |
Collapse
|
3
|
Selvaraj M, B S S, Aly Saad Aly M. Terahertz-based biosensors for biomedical applications: A review. Methods 2025; 234:54-66. [PMID: 39638162 DOI: 10.1016/j.ymeth.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Biosensors have many life sciences-related applications, particularly in the healthcare sector. They are employed in a wide range of fields, including drug development, food quality management, early diagnosis of diseases, and environmental monitoring. Terahertz-based biosensing has shown great promise as a label-free, non-invasive, and non-contact method of detecting biological substances. THz Spectroscopy has achieved a remarkable advancement in biomolecule recognition providing a rapid, highly sensitive, and non-destructive approach for various biomedical applications. The significance of THz-based biosensors and the broad spectrum of biomolecules that can be detected and analyzed with biosensors are reviewed in this work. Additionally, this work summarizes several techniques that were previously reported to improve the sensitivity and selectivity of these biosensors. Furthermore, an in-depth comparison between previously developed biosensors with an emphasis on their performance is presented and highlighted in the current review. Lastly, the challenges, the potential, and the future prospects of THz-based biosensing technology are critically addressed.
Collapse
Affiliation(s)
- Meraline Selvaraj
- Department of Electronics & Communication Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India
| | - Sreeja B S
- Department of Electronics & Communication Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India.
| | - Mohamed Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Zhang Y, Li Y, Ren T, Xiao P, Duan JA. Novel and efficient techniques in the discovery of antioxidant peptides. Crit Rev Food Sci Nutr 2024; 64:11934-11948. [PMID: 37585700 DOI: 10.1080/10408398.2023.2245052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As a research hotspot in food science and nutrition, antioxidant peptides can function by scavenging free radicals, inhibiting peroxides, and chelating metal ions. Therefore, how to efficiently discover and screen antioxidant peptides has become a key issue in research and production. Traditional discovery methods are time-consuming and costly, but also challenging to resolve the quantitative structure-activity relationship of antioxidant peptides. Several novel techniques, including artificial intelligence, molecular docking, bioinformatics, quantum chemistry, phage display, switchSENSE, surface plasmon resonance, and fluorescence polarization, are emerging rapidly as solutions. These techniques possess efficient capability for the discovery of antioxidant peptides, even with the potential for high-throughput screening. In addition, the quantitative structure-activity relationship can be resolved. Notably, combining these novel techniques can overcome the drawbacks of a single one, thus improving efficiency and expanding the discovery horizon. This review has summarized eight novel and efficient techniques for discovering antioxidant peptides and the combination of techniques. This review aims to provide scientific evidence and perspectives for antioxidant peptide research.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Zhang Z, Chen J, Chen L, Long K, Qu L, Huang S, Yuan X, Ji X, Li Q, Zhao X. Bivalent affinity binding-inspired PPARγ immobilization with selective conformation and improved ligand-binding activity. J Chromatogr A 2024; 1730:465141. [PMID: 38986402 DOI: 10.1016/j.chroma.2024.465141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.
Collapse
Affiliation(s)
- Zilong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jiahuan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lixiang Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Kaihua Long
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lejing Qu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Silin Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xinyi Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xu Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
6
|
Almenhali AZ, Eissa S. Aptamer-based biosensors for the detection of neonicotinoid insecticides in environmental samples: A systematic review. Talanta 2024; 275:126190. [PMID: 38703483 DOI: 10.1016/j.talanta.2024.126190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.
Collapse
Affiliation(s)
- Asma Zaid Almenhali
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates.
| |
Collapse
|
7
|
Wu J, Wang X, Li X, Zhu Z, Cui Z, Zhang T, Zou W, Han G. A dual-labeling molecule for efficient drug discovery of mitochondrial-lysosomal interactions. Mol Cell Probes 2024; 76:101968. [PMID: 38960210 DOI: 10.1016/j.mcp.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The close association between organelle interactions, such as mitochondrial-lysosomal interactions, and various diseases, including tumors, remains a challenge for drug discovering and identification. Conventional evaluation methods are often complex and multistep labeling procedures often generate false positives, such as cell damage. To overcome these limitations, we employed a single dual-color reporting molecule called Coupa, which labels mitochondria and lysosomes as blue and red, respectively. This facilitates the evaluation and discovering of drugs targeting mitochondria-lysosome contact (MLC). Using Coupa, we validated the effectiveness of various known antitumor drugs in intervening MLC by assessing their effect on key aspects, such as status, localization, and quantity. This provides evidence for the accuracy and applicability of our dual-color reporting molecule. Notably, we observed that several structural isomers of drugs, including Urolithin (A/B/C), exhibited distinct effects on MLC. In addition, Verteporfin and TEAD were found to induce anti-tumor effects by controlling MLC at the organelle level, suggesting a potential new mechanism of action. Collectively, Coupa offers a novel scientific tool for discovering drugs that target mitochondrial-lysosomal interactions. It not only distinguished the differential effects of structurally similar drugs on the same target, but also reveals new mechanisms underlying the reported antitumor properties of existing drugs. Ultimately, our findings contribute to the advancement of drug discovery and provide valuable insights into the complex interactions between organelles in a disease context.
Collapse
Affiliation(s)
- Jinfang Wu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Xiang Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Zixuan Zhu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Zhongcheng Cui
- College of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Tao Zhang
- Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China.
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Medicine-Engineering Integration & Medical Equipment Innovation Institute of Anhui Medical University, Hefei, Anhui, China.
| | - Guanying Han
- Medical College of Jinzhou Medical University, Jinzhou, China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
8
|
Mahmoudi-Maleki R, Majidi MR, Sohrabi H, Mahmoudi E, Fooladvand H, Coruh A, Niaei A. Exploring the potential of SrTi 0.7Fe 0.3O 3 perovskite/Chitosan nanosheets for the development of a label-free electrochemical sensing assay for determination of naproxen in human plasma samples. Anal Biochem 2024; 690:115513. [PMID: 38531530 DOI: 10.1016/j.ab.2024.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Naproxen is a nonsteroidal anti-inflammatory drug used to treat nonrheumatic inflammation, migraine, and gout. Therefore, the determination of naproxen in pharmaceutical and biological samples is of particular importance. In the present work, SrTi0.7Fe0.3O3 perovskite/Chitosan nanosheets were used to modify the surface of a glassy carbon electrode (GCE) for highly sensitive determination of naproxen. To ensure the successful synthesis of the perovskite nanosheets, morphological studies including scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) were carried out. The electrochemical investigations of naproxen on the modified surface of GCE were investigated and the limit of detection (LOD) and limit of quantification (LOQ) were acquired 0.50 and 1.67 μM, respectively. Additionally, the linear range (LR) of 1.99-130.84 μM was obtained for the oxidation of naproxen. The obtained results have been proved that the mentioned method is simple, sensitive, and specific with a short analysis time. The dominant analytical features of the designed sensor are possessing a low detection limit, excellent stability, repeatability, and high selectivity in the presence of naproxen. For investigation of the applicability of the designed assay in real sample analysis, human plasma samples have been examined and a recovery index was acquired 95%.
Collapse
Affiliation(s)
| | - Mir Reza Majidi
- Department of Analytical Chemistry, University of Tabriz, Tabriz, 51666 16471, Iran.
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, University of Tabriz, Tabriz, 51666 16471, Iran.
| | - Elham Mahmoudi
- Catalyst and Reactor Research Lab., Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Homa Fooladvand
- Department of Analytical Chemistry, University of Tabriz, Tabriz, 51666 16471, Iran
| | - Ali Coruh
- Department of Physics, Sakarya University, Sakarya, Turkey
| | - Aligholi Niaei
- Catalyst and Reactor Research Lab., Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz, Iran; Department of Physics, Sakarya University, Sakarya, Turkey
| |
Collapse
|
9
|
Kairys V, Baranauskiene L, Kazlauskiene M, Zubrienė A, Petrauskas V, Matulis D, Kazlauskas E. Recent advances in computational and experimental protein-ligand affinity determination techniques. Expert Opin Drug Discov 2024; 19:649-670. [PMID: 38715415 DOI: 10.1080/17460441.2024.2349169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Modern drug discovery revolves around designing ligands that target the chosen biomolecule, typically proteins. For this, the evaluation of affinities of putative ligands is crucial. This has given rise to a multitude of dedicated computational and experimental methods that are constantly being developed and improved. AREAS COVERED In this review, the authors reassess both the industry mainstays and the newest trends among the methods for protein - small-molecule affinity determination. They discuss both computational affinity predictions and experimental techniques, describing their basic principles, main limitations, and advantages. Together, this serves as initial guide to the currently most popular and cutting-edge ligand-binding assays employed in rational drug design. EXPERT OPINION The affinity determination methods continue to develop toward miniaturization, high-throughput, and in-cell application. Moreover, the availability of data analysis tools has been constantly increasing. Nevertheless, cross-verification of data using at least two different techniques and careful result interpretation remain of utmost importance.
Collapse
Affiliation(s)
- Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Egidijus Kazlauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
10
|
Manoharan AK, Batcha MIK, Mahalingam S, Raj B, Kim J. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sens 2024; 9:1706-1734. [PMID: 38563358 DOI: 10.1021/acssensors.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The development of advanced technologies for the fabrication of functional nanomaterials, nanostructures, and devices has facilitated the development of biosensors for analyses. Two-dimensional (2D) nanomaterials, with unique hierarchical structures, a high surface area, and the ability to be functionalized for target detection at the surface, exhibit high potential for biosensing applications. The electronic properties, mechanical flexibility, and optical, electrochemical, and physical properties of 2D nanomaterials can be easily modulated, enabling the construction of biosensing platforms for the detection of various analytes with targeted recognition, sensitivity, and selectivity. This review provides an overview of the recent advances in 2D nanomaterials and nanostructures used for biosensor and wearable-sensor development for healthcare and health-monitoring applications. Finally, the advantages of 2D-nanomaterial-based devices and several challenges in their optimal operation have been discussed to facilitate the development of smart high-performance biosensors in the future.
Collapse
Affiliation(s)
- Arun Kumar Manoharan
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Mohamed Ismail Kamal Batcha
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Balwinder Raj
- Department of Electronics and Communication Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab 144011, India
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
11
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
12
|
Qin C, Wang Y, Hu J, Wang T, Liu D, Dong J, Lu Y. Artificial Olfactory Biohybrid System: An Evolving Sense of Smell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204726. [PMID: 36529960 PMCID: PMC9929144 DOI: 10.1002/advs.202204726] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The olfactory system can detect and recognize tens of thousands of volatile organic compounds (VOCs) at low concentrations in complex environments. Bioelectronic nose (B-EN), which mimics olfactory systems, is becoming an emerging sensing technology for identifying VOCs with sensitivity and specificity. B-ENs integrate electronic sensors with bioreceptors and pattern recognition technologies to enable medical diagnosis, public security, environmental monitoring, and food safety. However, there is currently no commercially available B-EN on the market. Apart from the high selectivity and sensitivity necessary for volatile organic compound analysis, commercial B-ENs must overcome issues impacting sensor operation and other problems associated with odor localization. The emergence of nanotechnology has provided a novel research concept for addressing these problems. In this work, the structure and operational mechanisms of biomimetic olfactory systems are discussed, with an emphasis on the development and immobilization of materials. Various biosensor applications and current developments are reviewed. Challenges and opportunities for fulfilling the potential of artificial olfactory biohybrid systems in fundamental and practical research are investigated in greater depth.
Collapse
Affiliation(s)
- Chuanting Qin
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yi Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Ting Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Dong Liu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jian Dong
- Tianjin Industrial Microbiology Key LaboratoryCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
13
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Han C, Dong T, Wang P, Zhou F. Microfluidically Partitioned Dual Channels for Accurate Background Subtraction in Cellular Binding Studies by Surface Plasmon Resonance Microscopy. Anal Chem 2022; 94:17303-17311. [PMID: 36454605 DOI: 10.1021/acs.analchem.2c04324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Unlike conventional surface plasmon resonance (SPR) using an antifouling film to anchor biomolecules and a reference channel for background subtraction, SPR microscopy for single-cell analysis uses a protein- or polypeptide-modified gold substrate to immobilize cells and a cell-free area as the reference. In this work, we show that such a substrate is prone to nonspecific adsorption (NSA) of species from the cell culture media, resulting in false background signals that cannot be correctly subtracted. To obtain accurate kinetic results, we patterned a dual-channel substrate using a microfluidic device, with one channel having poly-l-lysine deposited in situ onto a preformed polyethylene glycol (PEG) self-assembled monolayer for cell immobilization and the other channel remaining as PEG-covered for reference. The two 2.0 mm-wide channels are separated by a 75 μm barrier, and parts of the channels can be readily positioned into the field of view of an SPR microscope. The use of this dual-channel substrate for background subtraction is contrasted with the conventional approach through the following binding studies: (1) wheat germ agglutinin (WGA) attachment to the N-acetyl glucosamine and N-acetyl-neuraminic acid sites of glycans on HFF cells, and (2) the S1 protein of the COVID-19 virus conjugation with angiotensin-converting enzyme 2 (ACE2) on the HEK293 cells. Both studies revealed that interferences by NSA and the surface plasmon polariton wave diffracted by cells can be excluded with the dual-channel substrate, and the much smaller refractive index changes caused by the injected solutions can be correctly subtracted. Consequently, sensorgrams with higher signal-to-noise ratios and shapes predicted by the correct binding model can be obtained with accurate kinetic and affinity parameters that are more biologically relevant. The affinity between S1 protein and ACE2 is comparable to that measured with recombinant ACE2, yet the binding kinetics is different, suggesting that the cell membrane does impose a kinetic barrier to their interaction.
Collapse
Affiliation(s)
- Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, P. R. China
| |
Collapse
|
15
|
Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022; 221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors. The performance of the DNA sensors is summarized within 2017-2022 for various drugs and factors influencing the sensitivity and selectivity of the response are discussed. Special attention is paid to the mechanism of the signal generation and possible drawbacks in the analysis of real samples.
Collapse
Affiliation(s)
- G A Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation; Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation.
| | - A V Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - S V Belyakova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| |
Collapse
|
16
|
Razlansari M, Ulucan-Karnak F, Kahrizi M, Mirinejad S, Sargazi S, Mishra S, Rahdar A, Díez-Pascual AM. Nanobiosensors for detection of opioids: A review of latest advancements. Eur J Pharm Biopharm 2022; 179:79-94. [PMID: 36067954 DOI: 10.1016/j.ejpb.2022.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and causeaddiction problems.Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes.Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Collapse
Affiliation(s)
- Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea; RFIC Lab, Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
17
|
Design and synthesis of first environment-sensitive coumarin fluorescent agonists for MrgX2. Int J Biol Macromol 2022; 203:481-491. [PMID: 35051504 DOI: 10.1016/j.ijbiomac.2022.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Mas related G-protein-coupled receptor member X2 (MrgX2) has been identified as the crucial receptor in drug induced pseudo-allergic reactions and allergic diseases. In this research, the first type of fluorescent agonists (ZX1, ZX2 and ZX3) for MrgX2 were developed by conjugating environment-sensitive fluorophore coumarin to MrgX2 selective agonists (R)-ZINC-3573. Their environment-sensitive property was confirmed by the dramatically increase of fluorescent intensity after binding to the hydrophobic ligand binding domain MrgX2, which help to overcome the high background signal. Based on these characteristics, they can be used for selective visualization of MrgX2 in living cells even with their own background interference. Among these fluorescent agonists, compound ZX2 possessed splendid spectroscopic properties, outstanding pharmacological activities (EC50 = 0.93 μM, KD = 1.97 μM). And a competitive binding assay was established with ZX2 to analysis the binding affinity of MrgX2 agonists, which shown high coherence with the results of cell membrane chromatography. To our knowledge, these probes are the first fluorescent ligands of MrgX2 with agonistic activity and environment-sensitive property, which is expected to use for the development of MrgX2 molecular pharmacology and serve as a convenient high-throughput screening tool for the drug candidates targeting MrgX2.
Collapse
|