1
|
Li XY, Zhou XD, Hu JM. Peptides in the detection of metal ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6589-6598. [PMID: 39269217 DOI: 10.1039/d4ay01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
By means of their specific interactions with different metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. In view of natural metallopeptides, scientists have proposed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing various sensors. However, the design of new peptide ligands requires a deep understanding of the structures, assembly properties, and dynamic behaviors of such peptides. This review briefly describes detection strategies of metal ions via coordination to the binding sites in peptides. The principles and functions of sensing systems are described as well. We also highlight some examples of a metal-induced peptide self-assembly with relevance to biotechnology applications.
Collapse
Affiliation(s)
- Xin-Yi Li
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Dong Zhou
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Ji-Ming Hu
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
2
|
de la Torre M, Pomorski A. Investigation of metal ion binding biomolecules one molecule at a time. Front Chem 2024; 12:1378447. [PMID: 38680456 PMCID: PMC11045889 DOI: 10.3389/fchem.2024.1378447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024] Open
Abstract
Metal ions can perform multiple roles ranging from regulatory to structural and are crucial for cell function. While some metal ions like Na+ are ubiquitously present at high concentrations, other ions, especially Ca2+ and transition metals, such as Zn2+ or Cu+/2+ are regulated. The concentrations above or below the physiological range cause severe changes in the behavior of biomolecules that bind them and subsequently affect the cell wellbeing. This has led to the development of specialized protocols to study metal ion binding biomolecules in bulk conditions that mimic the cell environment. Recently, there is growing evidence of influence of post-transcriptional and post-translational modifications on the affinity of the metal ion binding sites. However, such targets are difficult to obtain in amounts required for classical biophysical experiments. Single molecule techniques have revolutionized the field of biophysics, molecular and structural biology. Their biggest advantage is the ability to observe each molecule's interaction independently, without the need for synchronization. An additional benefit is its extremely low sample consumption. This feature allows characterization of designer biomolecules or targets obtained coming from natural sources. All types of biomolecules, including proteins, DNA and RNA were characterized using single molecule methods. However, one group is underrepresented in those studies. These are the metal ion binding biomolecules. Single molecule experiments often require separate optimization, due to extremely different concentrations used during the experiments. In this review we focus on single molecule methods, such as single molecule FRET, nanopores and optical tweezers that are used to study metal ion binding biomolecules. We summarize various examples of recently characterized targets and reported experimental conditions. Finally, we discuss the potential promises and pitfalls of single molecule characterization on metal ion binding biomolecules.
Collapse
Affiliation(s)
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
3
|
Sun H, Yao C, You K, Chen C, Liu S, Xu Z. Nanopore single-molecule biosensor in protein denaturation analysis. Anal Chim Acta 2023; 1243:340830. [PMID: 36697181 DOI: 10.1016/j.aca.2023.340830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Unclear issues in protein studies include but not limited to the stability and denaturation mechanism in the presence of denaturants. Herein, we report a dynamic monitoring approach based on nanopore single-molecule biosensor, which can detect the protein's folding and unfolding transitions by recording a nanopore ionic current. When gradually increasing the concentration of denaturant guanidine hydrochloride (GdmCl), sensitive responses were observed with lysozyme unfolding. The emergence of the featured biphasic-pulse demonstrated the existence of a stable intermediate. It was the first time to experimentally confirm the dynamic equilibrium between the intermediate and the native states at single molecule level, therefore consolidating the standpoint of lysozyme denaturation process following the three-state model. Additionally, we got more insights into the conformation about the intermediate as globular-like structure, larger gyration radius, and enhanced positive charge density. We considered that the manner of denaturant toward lysozyme adopts the "direct" model based on stronger electrostatic and van der Waals forces. Nanopore biosensor exhibited excellent sensitivity with a low detection concentration of 280 pM and reproducibility in analysing the folding intermediate of lysozyme.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China.
| | - Chuan Yao
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| | - Kaibo You
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| | - Can Chen
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| | - Shuoshuo Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| | - Zhihong Xu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| |
Collapse
|
4
|
Li M, Chen S, Wang Y, Zhang S, Song D, Tian R, Geng J, Wang L. Label-free high-precise nanopore detection of endopeptidase activity of anthrax lethal factor regulated by diverse conditions. Biosens Bioelectron 2023; 219:114800. [PMID: 36274430 DOI: 10.1016/j.bios.2022.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/24/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
Abstract
Endopeptidase activity of anthrax lethal factor (aLF) prevents the destroy of anthracis spore intracellularly by host macrophages, meanwhile disables the signaling pathways extracellularly that leads to host lethality. Hence, inhibitory of this activity is expected to be an alternative option to cure anthrax infection. Herein, we fabricated a nanopore platform via transmembrane pore construction in vitro, which allows precise mimics, monitoring of intercellular proteinic transport and enables the quantitative detection of aLF endopeptidase activity towards MAPKK signaling protein at single molecule level. Next, we inhibited the aLF activity via screening approaches of protein-metal ion acquisition and other condition controlment (proton/hydroxide strength, adapted temperature, ionizing irradiation), which were identified by nanopore electrokinetic study. Upon the results, we found that Ca2+, Mg2+, Mn2+, Ni2+ collaborating with Zn2+ promote aLF activity efficiently. In contrary, Cd2+, Co2+, Cu2+ have great inhibitory effect. Result further revealed that, the speed of aLF endopeptidase activity with different ions functions as the nanopore signal frequency in linear manner, which enables evident distinction of those divalent ions using this proteinase assay. We also found the higher strength of the proton or hydroxide, the higher the inhibitory to aLF activity. Besides, adapted temperature and γ-ray also play integral roles in inhibiting this activity. Our results lay experimental basis for accurate detection of aLF activity, meanwhile provide new direction to screening novel stimuli-responsive inhibitors specific to aLF.
Collapse
Affiliation(s)
- Minghan Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Shanchuan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shaoxia Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Dandan Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
5
|
Ge Y, Cui M, Zhang Q, Wang Y, Xi D. Aerolysin nanopore-based identification of proteinogenic amino acids using a bipolar peptide probe. NANOSCALE ADVANCES 2022; 4:3883-3891. [PMID: 36133334 PMCID: PMC9470019 DOI: 10.1039/d2na00190j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Nanopore technology has attracted extensive attention due to its rapid, highly sensitive, and label-free performance. In this study, we aimed to identify proteinogenic amino acids using a wild-type aerolysin nanopore. Specifically, bipolar peptide probes were synthesised by linking four aspartic acid residues to the N-terminal and five arginine residues to the C-terminal of individual amino acids. With the help of the bipolar peptide carrier, 9 proteinogenic amino acids were reliably recognised based on current blockade and dwell time using an aerolysin nanopore. Furthermore, by changing the charge of the peptide probe, two of the five unrecognized amino acids above mentioned were identified. These findings promoted the application of aerolysin nanopores in proteinogenic amino acid recognition.
Collapse
Affiliation(s)
- Yaxian Ge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Mengjie Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University Guangzhou 510515 P. R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University Linyi 276005 P. R. China
| |
Collapse
|
6
|
Xiao Y, Ren J, Wang Y, Chen X, Zhou S, Li M, Gao F, Liang L, Wang D, Ren G, Wang L. De novo profiling of insect-resistant proteins of rice via nanopore peptide differentiation. Biosens Bioelectron 2022; 212:114415. [DOI: 10.1016/j.bios.2022.114415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
|
7
|
Wang L, Wang H, Chen X, Zhou S, Wang Y, Guan X. Chemistry solutions to facilitate nanopore detection and analysis. Biosens Bioelectron 2022; 213:114448. [PMID: 35716643 DOI: 10.1016/j.bios.2022.114448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Characteristic ionic current modulations will be produced in a single molecule manner during the communication of individual molecules with a nanopore. Hence, the information regarding the length, composition, and structure of a molecule can be extracted from deciphering the electrical message. However, until now, achieving a satisfactory resolution for observation and quantification of a target analyte in a complex system remains a nontrivial task. In this review, we summarize the progress and especially the recent advance in utilizing chemistry solutions to facilitate nanopore detection and analysis. The discussed chemistry solutions are classified into several major categories, including covalent/non-covalent chemistry, redox chemistry, displacement chemistry, back titration chemistry, chelation chemistry, hydrolysis-chemistry, and click chemistry. Considering the significant success of using chemical reaction-assisted nanopore sensing strategies to improve sensor sensitivity & selectivity and to study various topics, other non-chemistry based methodologies can undoubtedly be employed by nanopore sensors to explore new applications in the interdisciplinary area of chemistry, biology, materials, and nanotechnology.
Collapse
Affiliation(s)
- Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Han Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiaohan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Shuo Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
8
|
Hu J, Liu F, Chen Y, Fu J, Shangguan G, Ju H. Mass-Encoded Suspension Array for Multiplex Detection of Matrix Metalloproteinase Activities. Anal Chem 2022; 94:6380-6386. [PMID: 35412800 DOI: 10.1021/acs.analchem.2c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work designed a mass spectrometric biosensing strategy for the multiplex detection of matrix metalloproteinases (MMPs) with a mass-encoded suspension array. This array was fabricated as multiplex sensing probes by functionalizing magnetic beads with MMP-specific peptide-isobaric tags for relative and absolute quantification (iTRAQ) conjugates, which contained a hexahistidine tag for surface binding, a substrate region for MMP cleavage, and a coding region for the specific MMP. The integration of the multiplex coding ability of iTRAQ with ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and the proteolysis method for peptide digestion endowed the biosensing method with high throughput and ultrahigh sensitivity. This strategy could be conveniently performed by mixing the sample and the suspension array for enzymatic reactions and then digesting the uncleaved peptides with trypsin to release the coding regions for UPLC-MS/MS analysis. With MMP-2 and MMP-7 as analytes, the relative changes of peak area ratios of coding regions showed good linear responses in the ranges of 0.2-100 and 0.5-400 ng mL-1, with detection limits of 0.064 and 0.17 ng mL-1, respectively. The analysis of MMP activity in serum samples and its change responding to inhibitors demonstrated the specificity, practicability, and expansibility of the proposed strategy. This work paves a new avenue for the activity assays of multiplex enzymes and promotes the development of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Fu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|