1
|
Ye W, Lin HZ, Li M, Jiang L, Chen D, Lu JM. Dimensional reduction in Cs 2AgBiBr 6 enables long-term stable Perovskite-based gas sensing. Nat Commun 2025; 16:4820. [PMID: 40410209 PMCID: PMC12102292 DOI: 10.1038/s41467-025-60206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
Halide perovskite gas sensors have a low gas detection limit at room temperature, surpassing the performance of traditional metal oxide chemiresistors. However, they are prone to structural decomposition and performance loss due to the lack of coordination unsaturated surface metal ions and sensitivity to environmental factors such as water, oxygen, heat, and light. To address this issue, we present a general strategy: replacing the cation Cs+ in inorganic perovskite Cs2AgBiBr6 with long-chain alkylamines. This modification synthesizes perovskite sensor materials that effectively block moisture and exhibit excellent stability under real-working conditions. The chemiresistors show high sensitivity and stability to CO gas, with (BA)4AgBiBr8 detecting CO at a limit of 20 ppb, maintaining performance after 270 days of continuous exposure to ambient air. The exceptional performance of (BA)4AgBiBr8 is elucidated through density functional theory calculations combined with sum frequency generation spectroscopy, marking a significant breakthrough in halide perovskite-based gas sensing by surpassing the stability and sensitivity of traditional sensors.
Collapse
Affiliation(s)
- Wen Ye
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
- Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hong-Zhen Lin
- Department i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Menglong Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Lihua Jiang
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China
| | - Dongyun Chen
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China.
| | - Jian-Mei Lu
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Zhou K, Su H, Chen L, Tang L, Zhu C, Ma C, Tang J, Zeng D. Exposed (111) Plane Engineered of Lead-Free Perovskite Cs 2SnCl 6 Octahedra for DMC Sensing in LIB Electrolyte Leakage Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503337. [PMID: 40364486 DOI: 10.1002/smll.202503337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Dimethyl carbonate (DMC), as a major component of electrolytes, can be used as a marker for monitoring electrolyte leakage in lithium-ion batteries (LIBs). Herein, lead-free perovskite Cs2SnCl6 octahedra with (111) plane as the exposed surface are synthesized by a simple antisolvent method and the gas sensor based on these octahedra shows excellent adsorption performance for DMC molecules. The response value for 100 ppm DMC is 7.05 and response/recovery time is 82 s/83 s, as well as almost no degradation in performance during a one-month stability test. DFT calculations of the density of states and band structure reveal the adsorption of DMC molecules on perovskite surface. And it is first proposed that the adsorption conformations of DMC molecules have a significant influence on the adsorption energy. In situ infrared absorption spectrometry demonstrates the adsorption and decomposition process of DMC molecules. This mechanism provides crucial insights for the essence of lead-free perovskite gas sensing, while offering the guidance for designing high-performance lead-free perovskite gas sensing materials.
Collapse
Affiliation(s)
- Kechen Zhou
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Huiyu Su
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Liyan Chen
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Lu Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Chaoqi Zhu
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Chaofan Ma
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Jiahong Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Li M, Ye W, Ruan J, Ren Q, Dong S, Chen D, Li N, Xu Q, Li H, Lu J. Lead-Free Halide Double Perovskite Cs 2AgBiCl 6 for H 2S Trace Detection at Room Temperature. ACS Sens 2025; 10:2224-2233. [PMID: 40029963 DOI: 10.1021/acssensors.4c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Hydrogen sulfide (H2S) is an important respiratory biomarker of many diseases, and thus, developing H2S gas sensors with low detection limits at low operating temperatures is essential for the early diagnosis of diseases in low-resource environments. Although lead halide perovskites have unique electronic and optical properties, the high toxicity of lead has prompted the development of alternative materials. In this study, Cs2AgBiCl6 was synthesized using a simple method. The sensor based on Cs2AgBiCl6 showed excellent sensing of H2S gas at room temperature over a wide humidity range, with high response (90.6 vs 10 ppm of H2S) and fast response speed (99.6 s vs 400 ppb H2S). The detection limit was low (5 ppb H2S), and the selectivity at room temperature was excellent. Small changes in H2S concentration (<100 ppb) were detected as a fully reversible resistance signal. Additionally, sum frequency vibration spectroscopy and DFT calculations showed that the high gas sensitivity was attributed to the physical adsorption of H2S at Cl vacancies on the surface of Cs2AgBiCl6, as well as efficient charge transfer. This work provides an avenue for developing high-performance gas sensors based on nontoxic, wide band gap, halide double perovskite semiconductors operating at room temperature.
Collapse
Affiliation(s)
- Menglong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wen Ye
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
- Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Juanzhang Ruan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qiuyuan Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shihong Dong
- Suzhou Shijing Technology Co., Ltd., 58 jinrui Road, Suzhou 215137, P. R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Kumar A, Nath P, Kumar V, Kumar Tailor N, Satapathi S. 3D printed optical sensor for highly sensitive detection of picric acid using perovskite nanocrystals and mechanism of photo-electron transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121956. [PMID: 36252303 DOI: 10.1016/j.saa.2022.121956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Hand-held, compact and portable sensors for on-site detection of environmental contaminants are in high demand for industry 4.0. Here, we have developed a sensor based on luminescent organic-inorganic metal halide hybrid perovskites nanocrystals (CH3NH3PbBr3) with p-xylylenediamine as an additional capping agent for highly sensitive and selective detection of picric acid (PA), with a good linear range of 1.8 μM-14.3 μM achieving detection of limit (LOD) of 0.3 μM. The electrostatic interaction between PA and the capping ligand of perovskite nanocrystals resulted in significant fluorescence quenching, as revealed by the steady-state and time-resolved spectroscopy. The applicability of the developed sensor for PA detection was validated with a 3D printed device integrating surface mounting device (SMD) and paper microfluidics. This prototype device was successfully applied as a fluorescence turn-off sensor to detect PA, showing great potential for on-site detection. This 3D-printed paper-based microfluidic optical sensor proved very efficient for naked-eye detection of PA with an inbuilt excitation source, avoiding the requirement of expensive and complex instrumentation.
Collapse
Affiliation(s)
- Anshu Kumar
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India.
| | - Prathul Nath
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India.
| | - Vishal Kumar
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India.
| | - Naveen Kumar Tailor
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India.
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667, India.
| |
Collapse
|
5
|
Wu Q, Feng Z, Wang Z, Peng Z, Zhang L, Li Y. Visual chemiresistive dual-mode sensing platform based on SnS2/Ti3C2 MXene Schottky junction for acetone detection at room temperature. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Casanova-Chafer J, Garcia-Aboal R, Atienzar P, Llobet E. Unraveling the Gas-Sensing Mechanisms of Lead-Free Perovskites Supported on Graphene. ACS Sens 2022; 7:3753-3763. [PMID: 36410796 PMCID: PMC9791682 DOI: 10.1021/acssensors.2c01581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
Lead halide perovskites have been attracting great attention due to their outstanding properties and have been utilized for a wide variety of applications. However, the high toxicity of lead promotes an urgent and necessary search for alternative nanomaterials. In this perspective, the emerging lead-free perovskites are an environmentally friendly and harmless option. The present work reports for the first time gas sensors based on lead-free perovskite nanocrystals supported on graphene, which acts as a transducing element owing to its high and efficient carrier transport properties. The use of nanocrystals enables achieving excellent sensitivity toward gas compounds and presents better properties than those of bulky perovskite thin films, owing to their quantum confinement effect and exciton binding energy. Specifically, an industrially scalable, facile, and inexpensive synthesis is proposed to support two different perovskites (Cs3CuBr5 and Cs2AgBiBr6) on graphene for effectively detecting a variety of harmful pollutants below the threshold limit values. H2 and H2S gases were detected for the first time by utilizing lead-free perovskites, and ultrasensitive detection of NO2 was also achieved at room temperature. In addition, the band-gap type, defect tolerance, and electronic surface traps at the nanocrystals were studied in detail for understanding the differences in the sensing performance observed. Finally, a comprehensive sensing mechanism is proposed.
Collapse
Affiliation(s)
- Juan Casanova-Chafer
- MINOS
Research Group, Department of Electronics Engineering, Universitat Rovira i Virgili, 43007Tarragona, Spain
| | - Rocio Garcia-Aboal
- Instituto
de Tecnología Química (Universitat Politècnica
de València − Consejo Superior de Investigaciones Científicas), 46022Valencia, Spain
| | - Pedro Atienzar
- Instituto
de Tecnología Química (Universitat Politècnica
de València − Consejo Superior de Investigaciones Científicas), 46022Valencia, Spain
| | - Eduard Llobet
- MINOS
Research Group, Department of Electronics Engineering, Universitat Rovira i Virgili, 43007Tarragona, Spain
| |
Collapse
|
7
|
Wang J, Cao Q, Cheng XF, Ye W, He JH, Lu JM. Moisture-Insensitive and Highly Selective Detection of NO 2 by Ion-in-Conjugation Covalent Organic Frameworks. ACS Sens 2022; 7:3782-3789. [PMID: 36384296 DOI: 10.1021/acssensors.2c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As a common toxic gas, nitrogen dioxide (NO2) seriously threatens the environment and human respiratory system even at part per billion (ppb) level. Covalent organic frameworks (COFs) have gained widespread attention in sensing applications because of the benefits of designability, environmental stability, and a large number of active sites. However, the competitive adsorption of water molecules and the target gas molecules at room temperature as well as the weak interaction between COFs and gas molecules hinder their practical applications. Here, we introduce ion-in-conjugation (IIC) into a covalent organic framework (COF) by preparing a condensate of squaraine (SA) with 1,3,5-tris(4-aminophenyl)benzene (TAPB) to form a mesoporous macrocyclic material (SA-TAPB). Layers of SA-TAPB, drop cast onto interdigitated Ag-Pd alloy electrodes, show a statistically significant conductivity response to NO2 at concentrations as low as 30 ppb and a theoretical detection limit of 10.9 ppb. The sensor displays a lower sensitivity to variations in humidity when operated at 80 °C compared to room temperature. The density functional theory (DFT) calculations indicated that the main adsorption site of NO2 is dual hydrogen bonds formed between two amide hydrogen atoms of SA-TAPB and the NO2 molecule. Gas adsorption experiments revealed that SA-TAPB has the largest adsorption capacity of NO2 versus other interference gases, which were responsible for the excellent selectivity toward NO2.
Collapse
Affiliation(s)
- Jia Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Mate-Rials, Soochow University, Suzhou215123, P. R. China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Mate-Rials, Soochow University, Suzhou215123, P. R. China
| | - Xue-Feng Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Mate-Rials, Soochow University, Suzhou215123, P. R. China
| | - Wen Ye
- Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou215123, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Mate-Rials, Soochow University, Suzhou215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Mate-Rials, Soochow University, Suzhou215123, P. R. China
| |
Collapse
|
8
|
Bhosale MK, Kazi AI, Pawar KK, Shingate RS, Kadam AD, Patil NJ, Sheikh AD. Eco-friendly MA 3Bi 2I 9perovskite thin films based ammonia sensor. NANOTECHNOLOGY 2022; 34:065501. [PMID: 36347030 DOI: 10.1088/1361-6528/aca0f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Organic-inorganic perovskite halides (OIPH) have emerged as a wonder material with growing interest in sensors detecting various toxic gases. However, lead toxicity represents a potential obstacle, and therefore finding lead-free cost-effective compatible materials for gas sensing applications is essential. In this work, methylammonium bismuth iodide i.e. (CH3NH3)3Bi2I9(MABI) perovskite thin films-based ammonia (NH3) sensor was synthesized using an antisolvent-assisted one-step spin coating method. The MABI sensor shows a linear relationship between the responsivity and concentration of NH3with excellent reversibility, high gas responsivity, and humidity stability. The MABI thin-film sensor exhibits a maximum gas response of 24%, a short response/recovery time i.e. 0.14 s /8.15 s and good reversibility at 6 ppm of NH3. It was observed that MABI thin films based sensors have excellent ambient stability over a couple of months. This work reveals that it is feasible to design high-performance gas sensors based on environmentally-friendly Bi-based OIPH materials.
Collapse
Affiliation(s)
- M K Bhosale
- School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - A I Kazi
- School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - K K Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - R S Shingate
- School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - A D Kadam
- School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - N J Patil
- School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, Maharashtra, India
| | - Arif D Sheikh
- School of Nanoscience and Technology, Shivaji University, Kolhapur, 416004, Maharashtra, India
- Centre for Nanoscience and Nanotechnology, Amity University Maharashtra, Somathne, Mumbai, 410206, Maharashtra, India
| |
Collapse
|
9
|
Ostovan A, Naghavi SS. Highly Sensitive, Selective and Low-Power Consumption Metalloporphyrin−Based Junctions for Nitrogen Monoxide Detection with Excellent Recovery. Phys Chem Chem Phys 2022; 24:15579-15587. [DOI: 10.1039/d2cp01553f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research interest in chemical gas detection has been directed towards developing highly selective bio-inspired and eco-friendly materials that allow the integration of sensors in daily human life, such as the...
Collapse
|
10
|
Adamu BI, Chen P, Chu W. Role of nanostructuring of sensing materials in performance of electrical gas sensors by combining with extra strategies. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|