1
|
Cho A, Kang H, Cho Y, Jung HT, Chae H, Cho SY. Atomic Layer-Modified 3D Pd Nanochannels for High-Performance Hydrogen Sensing. ACS Sens 2025. [PMID: 40371870 DOI: 10.1021/acssensors.5c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Palladium (Pd), known for its excellent H2 adsorption properties and ability to form palladium hydride (PdHx), is extensively utilized as a key material in hydrogen (H2) sensing technologies. Nevertheless, conventional Pd-based H2 sensors have shown limited performance enhancements due to challenges in precisely controlling the microscopic interfaces between Pd nanograins, which determine the total resistance signal of the sensors. This limitation arises from the lack of a technique capable of precisely manipulating these interfaces at the atomic level. In this study, we develop an atomic layer etching (ALE) technique to enhance the performance of Pd-based H2 sensors by enabling precise atomic-scale control over the surface of Pd nanochannels. We fabricated 3D Pd nanopatterns with ultrasmall grain sizes through a top-down nanolithography process, followed by an ALE process that achieved atomic-level precision (10 Å resolution) without compromising material crystallinity. Our two-step ALE process, comprising surface modification with Cl2 plasma and removal with NH3 ligand addition, enables uniform etching across a 4 in. wafer with less than 1% variation in etch per cycle (EPC). This atomic-level modulation of Pd nanochannels resulted in significantly enhanced H2 sensitivity, demonstrating a maximum 130-fold increase in response to 1% H2 concentration compared to nonatomically controlled sensors. Such substantial enhancement has been difficult to achieve through conventional structural tuning methods and is attributed to the maximized volume change of PdHx resulting from the expanded gaps between Pd grains. This platform provides a promising avenue for developing high-performance H2 sensors and other noble-metal-based applications requiring atomic-level structural precision.
Collapse
Affiliation(s)
- Ahyeon Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hojin Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youngwook Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Heeyeop Chae
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soo-Yeon Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Ma L, Zou Y, Feng Q, Li Z, Liang Q, Li GD. Pd nanoparticles-functionalized In 2O 3 based gas sensor for highly selective detection of toluene. Talanta 2025; 287:127682. [PMID: 39923675 DOI: 10.1016/j.talanta.2025.127682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
Given the threat posed by toluene to human health and environmental safety, real-time and efficient detection of toluene assumes paramount importance. However, the low chemical reactivity and structural similarity of benzene, toluene, and xylene (BTX) gases impede the attainment of highly selective toluene detection. Herein, palladium-loaded indium oxide nanospheres were successfully synthesized through a combination of solvothermal and post-reduction methods. And the sensor based on 0.75 wt% Pd-In2O3 exhibits the response to the concentration of 100 ppm toluene (Ra/Rg = 21) that is approximately four times better compared to pure indium oxide (Ra/Rg = 4) at their respective optimum operating temperatures. Moreover, this sensor exhibited enhanced sensing performance towards toluene, including a low operating temperature of 160 °C, exceptional selectivity, and good stability. Furthermore, an investigation into the sensing mechanism of toluene by the Pd-In2O3-based sensor was conducted. The chemical and electron sensitization effects of palladium result in the more chemisorbed oxygen of the sensing material, which improves the toluene sensing performance by enhancing the reaction with more toluene molecules. Additionally, the moderate catalytic activation of toluene by palladium plays a crucial role in improving the selectivity. Overall, this work provides a basis for the rational design of metal oxide semiconductor sensors with catalytic properties for the highly selective detection of toluene.
Collapse
Affiliation(s)
- LeLe Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, 530004, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, 530004, China
| | - Zequan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qihua Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi, Nanning, 530004, China.
| | - Guo-Dong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
Bhalani DV, Lee HM, Lee SH, Kim Y, Jung SH, Kim JY, Lim B. Relationship between Density Changes and Electrical Properties of Chemically Self-Assembled Monolayer Single-Walled Carbon Nanotube Networks by Controlling Anchoring Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40209145 DOI: 10.1021/acs.langmuir.5c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Single-walled carbon nanotubes (SWNTs) are valued for their high carrier mobility, tunable band gaps, and strong mechanical properties, making them promising for electronic applications. However, the presence of metallic SWNTs in mixtures impairs device performance, requiring the isolation of semiconducting SWNTs (sc-SWNTs). Conjugated polymer wrapping is a leading technique for this selective separation owing to its simplicity and high selectivity; however, challenges persist in achieving optimal SWNT density, uniformity, and reproducibility. In this study, chemically self-assembled monolayer sc-SWNTs are fabricated using a click reaction on prepatterned alkyne-functional adhesion layers. We elucidated the effect of variations in the azide content on the sc-SWNT selectivity, SWNT number density, uniformity, and network distribution, as well as its subsequent effect on the field-effect transistor (FET) performance. In addition, we propose gradually reducing azide functionalization in wrapping polymer side chains to enhance the sc-SWNT selectivity while maintaining effective chemical self-assembly. The sc-SWNT purity, film density, and FET performance were significantly improved when the azide content was reduced to a certain level. This study offers a pathway to enhance sc-SWNT selectivity, purity, and device performance via azide functionalization optimization, advancing the commercialization of SWNT-based electronics.
Collapse
Affiliation(s)
- Dixit V Bhalani
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hye Min Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Graduate School of Carbon Neutrality, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seung-Hoon Lee
- Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungnam 31080, Republic of Korea
| | - Yejin Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Seo-Hyun Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Jin Young Kim
- Graduate School of Carbon Neutrality, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bogyu Lim
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
4
|
Potter M, Debnath S, Mandapati P, Schmidt K, Janzen K, Drover MW, Rondeau-Gagné S, Mutus B. The Selective and Sensitive Fluorogenic Detection of Hydrogen Gas Using an Azomethine-H Dye. ACS Sens 2025; 10:2173-2180. [PMID: 40025744 DOI: 10.1021/acssensors.4c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Hydrogen (H2(g)) is a viable green fossil fuel alternative, as its combustion yields only water and energy. However, H2(g) is highly flammable, explosive, and lacks odor. These characteristics warrant sensitive and specific detection methods for its widespread use as an alternative fuel source. Recently, there has been growing interest in the development of H2(g) sensors, particularly those that are easy to use, environmentally friendly, and sensitive. Here, we show the first example of an optical fluorogenic hydrogen sensing platform, which employs a readily available dye azomethine-H (Az-H, 4-hydroxy-5-(2-hydroxy-benzylideneamino)-naphthalene-2,7-disulfonic acid) and a hydrogen-transferring compound [{Ir(Cp*)(Cl)}2(thbpym)](Cl)2 (IrCp*, (Cp* = C5Me5-, thbpym = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine)) to engineer H2(g) gas selectivity with high sensitivity at room temperature and pressure. This system yields ∼47-fold fluorescence enhancement when exposed to H2(g) in aqueous solution or ∼2.4-fold in a carboxymethyl cellulose (CMC) hydrogel matrix, with an estimated detection limit of ∼0.5% H2(g) with no cross-reactivity observed for potentially contaminating gases such as nitrogen (N2(g)), oxygen (O2(g)), or air.
Collapse
Affiliation(s)
- Mark Potter
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Suman Debnath
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Pavan Mandapati
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N8K 3G6, Canada
| | - Ken Schmidt
- Wilson Analytical Services Inc., #2 215 Carnegie Drive, St. Albert, AB T8N 5B1, Canada
| | - Kathy Janzen
- Wilson Analytical Services Inc., #2 215 Carnegie Drive, St. Albert, AB T8N 5B1, Canada
| | - Marcus W Drover
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N8K 3G6, Canada
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Bulent Mutus
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
5
|
Liu YY, Li Z, Liang Y, Tang T, Zhuang JH, Zhang WJ, Zhang BY, Ou JZ. Recent advances in nanomaterial-enabled chemiresistive hydrogen sensors. Chem Commun (Camb) 2024; 60:14497-14520. [PMID: 39569983 DOI: 10.1039/d4cc05430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
With the growing adoption of hydrogen energy and the rapid advancement of Internet of Things (IoT) technologies, there is an increasing demand for high-performance hydrogen gas (H2) sensors. Among various sensor types, chemiresistive H2 sensors have emerged as particularly promising due to their excellent sensitivity, fast response times, cost-effectiveness, and portability. This review comprehensively examines the recent progress in chemiresistive H2 sensors, focusing on developments over the past five years in nanostructured materials such as metals, metal oxide semiconductors, and emerging alternatives. This review delves into the underlying sensing mechanisms, highlighting the enhancement strategies that have been employed to improve sensing performance. Finally, current challenges are identified, and future research directions are proposed to address the limitations of existing chemiresistive H2 sensor technologies. This work provides a critical synthesis of the most recent advancements, offering valuable insights into both current challenges and future directions. Its emphasis on innovative material designs and sensing strategies will significantly contribute to the ongoing development of next-generation H2 sensors, fostering safer and more efficient energy applications.
Collapse
Affiliation(s)
- Yao Yang Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
| | - Yi Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Tao Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jing Hao Zhuang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wen Ji Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
6
|
Kim KH, Jo MS, Kim SH, Kim B, Kang J, Yoon JB, Seo MH. Long-term reliable wireless H 2 gas sensor via repeatable thermal refreshing of palladium nanowire. Nat Commun 2024; 15:8761. [PMID: 39384791 PMCID: PMC11479629 DOI: 10.1038/s41467-024-53080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
The increasing significance of hydrogen (H2) gas as a clean energy source has prompted the development of high-performance H2 gas sensors. Palladium (Pd)-based sensors, with their advantages of selectivity, scalability, and cost-effectiveness, have shown promise in this regard. However, the long-term stability and reliability of Pd-based sensors remain a challenge. This study not only identifies the exact cause for performance degradation in palladium (Pd) nanowire H2 sensors, but also implements and optimizes a cost-effective recovery method. The results from density functional theory (DFT) calculations and material analysis confirm the presence of C = O bonds, indicating performance degradation due to carbon dioxide (CO2) accumulation on the Pd surface. Based on the molecular behavior calculation in high temperatures, we optimized the thermal treatment method of 200 °C for 10 minutes to remove the C = O contaminants, resulting in nearly 100% recovery of the sensor's initial performance even after 2 months of contamination.
Collapse
Affiliation(s)
- Ki-Hoon Kim
- Department of Information Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Busan, Republic of Korea
| | - Min-Seung Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Ho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Bokyeong Kim
- Department of Nanoenergy Engineering, College of Nano Science and Technology, Pusan National University, Busan, Republic of Korea
| | - Joonhee Kang
- Department of Nanoenergy Engineering, College of Nano Science and Technology, Pusan National University, Busan, Republic of Korea.
| | - Jun-Bo Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Min-Ho Seo
- Department of Information Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Busan, Republic of Korea.
- School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan-si, Republic of Korea.
| |
Collapse
|
7
|
Toksha B, Gupta P, Rahaman M. Hydrogen Sensing with Palladium-Based Materials: Mechanisms, Challenges, and Opportunities. Chem Asian J 2024; 19:e202400127. [PMID: 38715432 DOI: 10.1002/asia.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Indexed: 06/12/2024]
Abstract
Palladium morphologies are prominently used in Hydrogen gas sensing applications owing to their unique characteristics and properties. In this review article, Palladium nanoparticles, thin films, and alloys were designated as the scope of Palladium morphologies. The aim of this review article is to explore Hydrogen sensing using Palladium, focusing on the recent advancements in the field.. The principles underlying Hydrogen sensing mechanisms with Palladium are discussed initially, highlighting the unique properties of Palladium that make it a promising material for this purpose. Special attention is given to the surface interactions and structural modifications that influence the sensitivity and selectivity of Palladium-based sensors The study also addresses key challenges and recent innovations in the field which contribute to the enhancement of Palladium-based Hydrogen sensing capabilities. The current state of research is critically examined to identify gaps in knowledge and future research directions are highlighted. The prospects and challenges associated with the use of Palladium for Hydrogen sensing, emphasizing its pivotal role in advancing sensor technologies for Hydrogen detection are also discussed.
Collapse
Affiliation(s)
- Bhagwan Toksha
- Faculty of Physics, Maharashtra Institute of Technology, Aurangabad, 431010, India
| | - Prashant Gupta
- Department of Plastic and Polymer Engineering, School of Engineering, Plastindia International University, Vapi, 3961935, India
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Li X, Sun K, Chen Y, Yuan Y. Study on the Gas-Chromic Character of Pd/TiO 2 for Fast Room-Temperature CO Detection. Molecules 2024; 29:3843. [PMID: 39202922 PMCID: PMC11357185 DOI: 10.3390/molecules29163843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
As a widely used support, TiO2 has often been combined with Pd to form highly sensitive gas-chromic materials. Herein, we prepared a series of Pd/TiO2 catalysts with different Pd content (from 0.1 to 5 wt.%) by the impregnation method for their utilization in fast room-temperature CO detection. The detection was simply based on visible color change when the Pd/TiO2 was exposed to CO. The sample with 1 wt.% Pd/TiO2 presented an excellent CO gasochromic character, associated with a maximum chromatic aberration value of 90 before and after CO exposure. Systematic catalyst characterizations of XPS, FT-IR, CO-TPD, and N2 adsorption-desorption and density functional theory calculations for the CO adsorption and charge transfer over the Pd and PdO surfaces were further carried out. It was found that the interaction between CO and the Pd surface was strong, associated with a large adsorption energy of -1.99 eV and charge transfer of 0.196 e. The color change was caused by a reduction in Pd2+ to metallic Pd0 over the Pd/TiO2 surface after CO exposure.
Collapse
Affiliation(s)
- Xinbao Li
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Kai Sun
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Ying Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Zhao X, Du L, Xing X, Li Z, Tian Y, Chen X, Lang X, Liu H, Yang D. Decorating Pd-Au Nanodots Around Porous In 2O 3 Nanocubes for Tolerant H 2 Sensing Against Switching Response and H 2S Poisoning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311840. [PMID: 38470189 DOI: 10.1002/smll.202311840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Indexed: 03/13/2024]
Abstract
With the recently-booming hydrogen (H2) economy by green H2 as the energy carriers and the newly-emerged exhaled diagnosis by human organ-metabolized H2 as a biomarker, H2 sensing is simultaneously required with fast response, low detection limit, and tolerant stability against humidity, switching, and poisoning. Here, reliable H2 sensing has been developed by utilizing indium oxide nanocubes decorated with palladium and gold nanodots (Pd-Au NDs/In2O3 NCBs), which have been synthesized by combined hydrothermal reaction, annealing, and chemical bath deposition. As-prepared Pd-Au NDs/In2O3 NCBs are observed with surface-enriched NDs and nanopores. Beneficially, Pd-Au NDs/In2O3 NCBs show 300 ppb-low detection limit, 5 s-fast response to 500 ppm H2, 75%RH-high humidity tolerance, and 56 days-long stability at 280 °C. Further, Pd-Au NDs/In2O3 NCBs show excellent stability against switching sensing response, and are tolerant to H2S poisoning even being exposed to 10 ppm H2S at 280 °C. Such excellent H2 sensing may be attributed to the synergistic effect of the boosted Pd-Au NDs' spillover effect and interfacial electron transfer, increased adsorption sites over the porous NCBs' surface, and utilized Pd NDs' affinity with H2 and H2S. Practically, Pd-Au NDs/In2O3 NCBs are integrated into the H2 sensing device, which can reliably communicate with a smartphone.
Collapse
Affiliation(s)
- Xinhua Zhao
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Lingling Du
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaxia Xing
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Zhenxu Li
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yingying Tian
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoyu Chen
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoyan Lang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Huigang Liu
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Dachi Yang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
10
|
Aarzoo, Siddiqui MA, Hasan M, Nidhi, Khan HA, Rastogi S, Arora I, Samim M. Palladium Nanoparticles and Lung Health: Assessing Morphology-Dependent Subacute Toxicity in Rats and Toxicity Modulation by Naringin - Paving the Way for Cleaner Vehicular Emissions. ACS OMEGA 2024; 9:32745-32759. [PMID: 39100302 PMCID: PMC11292822 DOI: 10.1021/acsomega.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
The release of palladium nanoparticles (PdNPs) from autocatalytic converters has raised concerns regarding public health and the environment due to their emergence as anthropogenic contaminants. With growing vehicular population, there is an urgent need for comprehensive toxicological studies of PdNPs to mitigate their risk. The present study aims to investigate the effects of spherical PdNPs with average sizes of 20 and 80 nm, as well as Pd nanorods, on the lung function of female Wistar rats following oral exposure to environmentally relevant doses (1 and 10 μg/kg) over a period of 28 days. Various biological parameters were evaluated, including liver and kidney biochemical changes, lung oxidative stress markers (SOD, CAT, GSH, LPO), lung inflammatory markers (IL-1β, IL-8, IL-6, and TNF-α), and histopathological alterations in the lungs. Additionally, the potential mitigating effects of naringin on PdNPs-induced toxicity were examined. The results demonstrate a significant increase in oxidative stress, the onset of inflammation, and histological changes in lung alveolar sacs upon exposure to all tested particles. Specifically, 20@PdNPs and PdNRs exhibited higher cytotoxicity and pro-inflammatory properties compared to 80@PdNPs. Naringin effectively attenuated the pulmonary toxicity induced by PdNPs by modulating oxidative and inflammatory pathways. These findings contribute to the sustainable development of PdNPs for their future applications in the biomedical and environmental sectors, ensuring the advancement of safe and sustainable nanotechnology.
Collapse
Affiliation(s)
- Aarzoo
- Department
of Chemistry, School of Chemical and Life
sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mobin A. Siddiqui
- Department
of Chemistry, School of Chemical and Life
sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Hasan
- Department
of Toxicology, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nidhi
- Centre
for Translational & Clinical Research, Jamia Hamdard, New Delhi 110062, India
| | - Haider A. Khan
- Department
of Toxicology, School of Chemical and Life
Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Shweta Rastogi
- Department
of Chemistry, Hansraj College, Delhi University, New Delhi 110007, India
| | - Indu Arora
- Department
of Chemistry, Shaheed Rajguru College of Applied Sciences for Women, Delhi University, New Dehli 110062, India
| | - Mohammed Samim
- Department
of Chemistry, School of Chemical and Life
sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
11
|
Wei Z, Qin C, Yang X, Zhu L, Zhao X, Cao J, Wang Y. Surface modification of Co 3O 4 nanosheets through Cd-doping for enhanced CO sensing performance. Mikrochim Acta 2024; 191:234. [PMID: 38568389 DOI: 10.1007/s00604-024-06326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/23/2024] [Indexed: 05/12/2024]
Abstract
The detection of hazardous CO gas is an important research content in the domain of the Internet of Things (IoT). Herein, we introduced a facile metal-organic frameworks (MOFs)-templated strategy to synthesize Cd-doped Co3O4 nanosheets (Cd-Co3O4 NSs) aimed at boosting the CO-sensing performance. The synthesized Cd-Co3O4 NSs feature a multihole nanomeshes structure and a large specific surface area (106.579 m2·g-1), which endows the sensing materials with favorable gas diffusion and interaction ability. Furthermore, compared with unadulterated Co3O4, the 2 mol % Cd-doped Co3O4 (2% Cd-Co3O4) sensor exhibits enhanced sensitivity (244%) to 100 ppm CO at 200 °C and a comparatively low experimental limit of detection (0.5 ppm/experimental value). The 2% Cd-Co3O4 NSs show good selectivity, reproducibility, and long-term stability. The improved CO sensitivity signal is probably owing to the stable nanomeshes construction, high surface area, and rich oxygen vacancies caused by cadmium doping. This study presents a facile avenue to promote the sensing performance of p-type metal oxide semiconductors by enhancing the surface activity of Co3O4 combined with morphology control and component regulation.
Collapse
Affiliation(s)
- Zhanxiang Wei
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xuhui Yang
- President's Office, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yan Wang
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
12
|
Jo MS, Kim KH, Lee JS, Kim SH, Yoo JY, Choi KW, Kim BJ, Kwon DS, Yoo I, Yang JS, Chung MK, Park SY, Seo MH, Yoon JB. Ultrafast (∼0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire. ACS NANO 2023. [PMID: 38039345 DOI: 10.1021/acsnano.3c06806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The high explosiveness of hydrogen gas in the air necessitates prompt detection in settings where hydrogen is used. For this reason, hydrogen sensors are required to offer rapid detection and possess superior sensing characteristics in terms of measurement range, linearity, selectivity, lifetime, and environment insensitivity according to the publicized protocol. However, previous approaches have only partially achieved the standardized requirements and have been limited in their capability to develop reliable materials for spatially accessible systems. Here, an electrical hydrogen sensor with an ultrafast response (∼0.6 s) satisfying all demands for hydrogen detection is demonstrated. Tailoring structural engineering based on the reaction kinetics of hydrogen and palladium, an optimized heating architecture that thermally activates fully suspended palladium (Pd) nanowires at a uniform temperature is designed. The developed Pd nanostructure, at a designated temperature distribution, rapidly reacts with hydrogen, enabling a hysteresis-free response from 0.1% to 10% and durable characteristics in mechanical shock and repetitive operation (>10,000 cycles). Moreover, the device selectively detects hydrogen without performance degradation in humid or carbon-based interfering gas circumstances. Finally, to verify spatial accessibility, the wireless hydrogen detection system has been demonstrated, detecting and reporting hydrogen leakage in real-time within just 1 s.
Collapse
Affiliation(s)
- Min-Seung Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Hoon Kim
- Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jae-Shin Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung-Ho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae-Young Yoo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kwang-Wook Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Beom-Jun Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dae-Sung Kwon
- Electronic Devices Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16082, Republic of Korea
| | - Ilseon Yoo
- Electronic Devices Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16082, Republic of Korea
| | - Jae-Soon Yang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myung-Kun Chung
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So-Yoon Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- School of Biomedical Convergence Engineering, College of Information & Biomedical Engineering, Pusan National University, 49, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do 43241, Republic of Korea
| | - Jun-Bo Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Podlepetsky B, Samotaev N, Etrekova M, Litvinov A. Structure and Technological Parameters' Effect on MISFET-Based Hydrogen Sensors' Characteristics. SENSORS (BASEL, SWITZERLAND) 2023; 23:3273. [PMID: 36991983 PMCID: PMC10056915 DOI: 10.3390/s23063273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The influence of structure and technological parameters (STPs) on the metrological characteristics of hydrogen sensors based on MISFETs has been investigated. Compact electrophysical and electrical models connecting the drain current, the voltage between the drain and the source and the voltage between the gate and the substrate with the technological parameters of the n-channel MISFET as a sensitive element of the hydrogen sensor are proposed in a general form. Unlike the majority of works, in which the hydrogen sensitivity of only the threshold voltage of the MISFET is investigated, the proposed models allow us to simulate the hydrogen sensitivity of gate voltages or drain currents in weak and strong inversion modes, taking into account changes in the MIS structure charges. A quantitative assessment of the effect of STPs on MISFET performances (conversion function, hydrogen sensitivity, gas concentration measurement errors, sensitivity threshold and operating range) is given for a MISFET with a Pd-Ta2O5-SiO2-Si structure. In the calculations, the parameters of the models obtained on the basis of the previous experimental results were used. It was shown how STPs and their technological variations, taking into account the electrical parameters, can affect the characteristics of MISFET-based hydrogen sensors. It is noted, in particular, that for MISFET with submicron two-layer gate insulators, the key influencing parameters are their type and thickness. Proposed approaches and compact refined models can be used to predict performances of MISFET-based gas analysis devices and micro-systems.
Collapse
|
14
|
Kumar A, Chen K, Thundat T, Swihart MT. Paper-Based Hydrogen Sensors Using Ultrathin Palladium Nanowires. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5439-5448. [PMID: 36668703 DOI: 10.1021/acsami.2c18825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen (H2), as a chemical energy carrier, is a cleaner alternative to conventional fossil fuels with zero carbon emission and high energy density. The development of fast, low-cost, and sensitive H2 detection systems is important for the widespread adoption of H2 technologies. Paper is an environment-friendly, porous, and flexible material with great potential for use in sustainable electronics. Here, we report a paper-based sensor for room-temperature H2 detection using ultrathin palladium nanowires (PdNWs). To elucidate the sensing mechanism, we compare the performance of polycrystalline and quasi-single-crystalline PdNWs. The polycrystalline PdNWs showed a response of 4.3% to 1 vol % H2 with response and recovery times of 4.9 and 10.6 s, while quasi-single-crystalline PdNWs showed a response of 8% to 1 vol % H2 with response and recovery times of 9.3 and 13.0 s, respectively. The polycrystalline PdNWs show excellent selectivity, stability, and sensitivity, with a limit of detection of 10 ppm H2 in air. The fast response of ultrathin polycrystalline PdNW paper-based sensors arises from the synergistic effects of their ultrasmall diameter, high-index surface facets, strain-coupled grain boundaries, and porous paper substrate. This paper-based sensor is one of the fastest chemiresistive H2 sensors reported and is potentially orders of magnitude less expensive than current state-of-the-art H2-sensing solutions. This brings low-cost, room-temperature chemiresistive H2 sensing closer to the performance of ultrafast optical sensors and high-temperature metal oxide-based sensors.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States
| | - Thomas Thundat
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York14260, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York14260, United States
| |
Collapse
|
15
|
Garg S, Mishra V, Vega LF, Sharma RS, Dumée LF. Hydrogen Biosensing: Prospects, Parallels, and Challenges. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shafali Garg
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi110007, India
| | - Vandana Mishra
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi110007, India
- Centre for Inter-disciplinary Studies of Mountain & Hill Environment (CISMHE), University of Delhi, Delhi110007, India
- Delhi School of Climate Change and Sustainability, Institute of Eminence, University of Delhi, Delhi110007, India
| | - Lourdes F. Vega
- Khalifa University, Department of Chemical Engineering, Abu Dhabi127788, United Arab Emirates
- Khalifa University, Research, and Innovation Center on CO2 and Hydrogen, Abu Dhabi127788, United Arab Emirates
| | - Radhey Shyam Sharma
- Department of Environmental Studies, Bioresources and Environmental Biotechnology Laboratory, University of Delhi, Delhi110007, India
- Centre for Inter-disciplinary Studies of Mountain & Hill Environment (CISMHE), University of Delhi, Delhi110007, India
- Delhi School of Climate Change and Sustainability, Institute of Eminence, University of Delhi, Delhi110007, India
| | - Ludovic F. Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi127788, United Arab Emirates
- Khalifa University, Research, and Innovation Center on CO2 and Hydrogen, Abu Dhabi127788, United Arab Emirates
- Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi127788, United Arab Emirates
| |
Collapse
|
16
|
Voegtlin SP, Barnes RJ, Hubert CRJ, Larter SR, Bryant SL. Formation of biologically influenced palladium microstructures by Desulfovibrio desulfuricans and Desulfovibrio ferrophilus IS5. N Biotechnol 2022; 72:128-138. [PMID: 36396027 DOI: 10.1016/j.nbt.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
A range of Desulfovibrio spp. can reduce metal ions to form metallic nanoparticles that remain attached to their surfaces. The bioreduction of palladium (Pd) has been given considerable attention due to its extensive use in areas of catalysis and electronics and other technological domains. In this study we report, for the first time, evidence for Pd(II) reduction by the highly corrosive Desulfovibrio ferrophilus IS5 strain to form surface attached Pd nanoparticles, as well as rapid formation of Pd(0) coated microbial nanowires. These filaments reached up to 8 µm in length and led to the formation of a tightly bound group of interconnected cells with enhanced ability to attach to a low carbon steel surface. Moreover, when supplied with high concentrations of Pd (≥ 100 mmol Pd(II) g-1 dry cells), both Desulfovibrio desulfuricans and D. ferrophilus IS5 formed bacteria/Pd hybrid porous microstructures comprising millions of cells. These three-dimensional structures reached up to 3 mm in diameter with a dose of 1200 mmol Pd(II) g-1 dry cells. Under suitable hydrodynamic conditions during reduction, two-dimensional nanosheets of Pd metal were formed that were up to several cm in length. Lower dosing of Pd(II) for promoting rapid synthesis of metal coated nanowires and enhanced attachment of cells onto metal surfaces could improve the efficiency of various biotechnological applications such as microbial fuel cells. Formation of biologically stimulated Pd microstructures could lead to a novel way to produce metal scaffolds or nanosheets for a wide variety of applications.
Collapse
Affiliation(s)
- Stephen P Voegtlin
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| | - Robert J Barnes
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada; Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Stephen R Larter
- Department of Geosciences, University of Calgary, Calgary, Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada.
| |
Collapse
|
17
|
Abstract
Our demand for ubiquitous and reliable gas detection is spurring the design of intelligent and enabling gas sensors for the next-generation Internet of Things and Artificial Intelligence. The desire to introduce gas sensors everywhere is fueled by opportunities to create room-temperature semiconductor gas sensors with ultralow power consumption. In this Perspective, we provide an overview of the recent achievement of room-temperature gas sensors that have been translated from the advances in the design of the chemical and physical properties of low-dimensional semiconductor nanomaterials. The emergence of solution-processable nanomaterials opens up remarkable opportunities to integrate into high-performance and flexible room-temperature gas sensors by using low-temperature, large-area, solution-based methods instead of costly, high-vacuum, high-temperature device manufacturing processes. We review the fundamental factors which affect the receptor and transducer functions of semiconductor gas sensors. We also discuss challenges that must be addressed in the move to the continuous miniaturization and evolution of semiconductor gas sensors.
Collapse
Affiliation(s)
- Yanting Tang
- School of Optical and Electronic Information, School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yunong Zhao
- School of Optical and Electronic Information, School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Huan Liu
- School of Optical and Electronic Information, School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Singh S, Saggu IS, Chen K, Xuan Z, Swihart MT, Sharma S. Humidity-Tolerant Room-Temperature Selective Dual Sensing and Discrimination of NH 3 and NO Using a WS 2/MWCNT Composite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40382-40395. [PMID: 36001381 DOI: 10.1021/acsami.2c09069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Continuous detection of toxic and hazardous gases like nitric oxide (NO) and ammonia (NH3) is needed for environmental management and noninvasive diagnosis of various diseases. However, to the best of our knowledge, dual detection of these two gases has not been previously reported. To address the challenge, we demonstrate the design and fabrication of low-cost NH3 and NO dual gas sensors using tungsten disulfide/multiwall carbon nanotube (WS2/MWCNT) nanocomposites as sensing channels which maintained their performance in a humid environment. The composite-based device has shown successful dual detection at temperatures down to 18 °C and relative humidity of 90%. For 0.1 ppm ammonia, it exhibited a p-type conduction with response and recovery times of 102 and 261 s, respectively; on the other hand, with NO (10 ppb, n-type), these times were 285 and 198 s, respectively. The device with 5 mg MWCNTs possesses a superior selectivity along with a relative response of ≈7% (5 ppb) and ≈5% (0.1 ppm) for NO and NH3, respectively, at 18 °C. The response is less affected by relative humidity, and this is attributed to the presence of MWCNTs that are hydrophobic in nature. Upon simultaneous exposure to NO (5-10 ppb) and NH3 (0.1-5 ppm), the response was dominated by NO, implying clear discrimination to the simultaneous presence of these two gases. We propose a sensing mechanism based on adsorption/desportion and accompanied charge transfer between the adsorbed gas molecules and sensing surface. The results suggest that an optimized weight ratio of WS2 and MWCNTs could govern favorable sensing conditions for a particular gas molecule.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Physics, Guru Nanak Dev University Amritsar, Punjab-143005, India
| | - Imtej Singh Saggu
- Department of Physics, Guru Nanak Dev University Amritsar, Punjab-143005, India
| | - Kaiwen Chen
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Zhengxi Xuan
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Sandeep Sharma
- Department of Physics, Guru Nanak Dev University Amritsar, Punjab-143005, India
| |
Collapse
|
19
|
Priyadharshini B, Valsalal P. An Improved Humidity Sensor with GO-Mn-Doped ZnO Nanocomposite and Dimensional Orchestration of Comb Electrode for Effective Bulk Manufacturing. NANOMATERIALS 2022; 12:nano12101659. [PMID: 35630881 PMCID: PMC9146707 DOI: 10.3390/nano12101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022]
Abstract
The measurement and control of humidity is a major challenge that affects the sensing properties of sensors used in high-precision equipment manufacturing industries. Graphene Oxide(GO)-based materials have been extensively explored in humidity sensing applications because of their high surface area and functional groups. However, there is a lack of effective bulk-manufacturing processes for the synthesis of 2D-based nanocomposites with comb electrodes. Moreover, water intercalation within the layers of 2D materials increases recovery time. This work demonstrates the enhanced sensing characteristics of a capacitive/resistive GO-MnZnO nanocomposite humidity sensor produced using a cost-effective single-pot synthesis process. The in-plane sensing layer consistently improves sensitivity and reduces response time for a wide range of relative humidity measurements (10% to 90%). Interdigitated gold electrodes with varying numbers of fingers and spacing were fabricated using photolithography on a Si/SiO₂ for a consistent sensor device platform. The choice of nanomaterials, dimension of the sensor, and fabrication method influence the performance of the humidity sensor in a controlled environment. GO nanocomposites show significant improvement in response time (82.67 times greater at 40% RH) and sensitivity (95.7 times more at 60% RH). The response time of 4.5 s and recovery time of 21 s was significantly better for a wider range of relative humidity compared to the reduced GO-sensing layer and ZnMnO. An optimized 6 mm × 3 mm dimension sensor with a 28-fingers comb was fabricated with a metal-etching process. This is one of the most effective methods for bulk manufacturing. The performance of the sensing layer is comparable to established sensing nanomaterials that are currently used in humidity sensors, and hence can be extended for optimal bulk manufacturing with minimum electrochemical treatments.
Collapse
|