1
|
Martin H, Uguen A, Morfin JF, Isaac M, Pallier A, Melchior A, Bonnet CS. Zinc Sensing with a Pyridine-Based Lanthanide Contrast Agent: Structural Analysis in Aqueous Solution. Chemistry 2025; 31:e202403861. [PMID: 39729075 DOI: 10.1002/chem.202403861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Zinc is an important physiological cation, and its misregulation is implicated in various diseases. It is therefore important to be able to image zinc by non-invasive methods such as Magnetic Resonance Imaging (MRI). In this work, we have successfully synthesized a novel Gd3+-based complex specifically for Zn2+ sensing by MRI. Using a combination of NMR, luminescence, potentiometric, and relaxivity experiments, completed with DFT calculations, we demonstrate that incorporating a short linker between the Zn2+ sensing unit and the Gd3+ complex leads to unique behavior of the system in the absence of Zn2+. A significant increase in efficacy of the system is observed upon Zn2+ binding, and importantly, the complex is highly selective for Zn2+ relative to other physiological cations. A comprehensive structural study reliably determines the microscopic parameters at the origin of the Zn2+ response, primarily an increase in the number of water molecules directly coordinated to Gd3+ upon Zn2+ binding. Crucially, the system maintains a strong response to Zn2+ binding in the presence of Human Serum Albumin, highlighting its potential for biological applications.
Collapse
Affiliation(s)
- Harlei Martin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Adrien Uguen
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Manon Isaac
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| | - Andrea Melchior
- Polytechnic Department of Engineering, University of Udine, via del Cotonificio 108, 33100, Udine, Italy
| | - Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans, Cedex 2, France
| |
Collapse
|
2
|
Wang Y, Ma X, Zhang Y, Yang Y, Wang P, Chen T, Gao C, Dong C, Zheng J, Wu A. Insights into Non-Metallic Magnetic Resonance Imaging Contrast Agents: Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411875. [PMID: 39901535 DOI: 10.1002/smll.202411875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Traditional metal-based magnetic resonance imaging contrast agents (MRI CAs), such as gadolinium, iron, and manganese, have made significant advancements in diagnosing major diseases. However, their potential toxicity due to long-term accumulation in the brain and bones raises safety concerns. In contrast, non-metallic MRI CAs, which can produce a nuclear magnetic resonance effect, show great promise in MRI applications due to their adaptable structure and function, good biocompatibility, and excellent biodegradability. Nevertheless, the development of non-metallic MRI CAs is slow due to the inherent low magnetic sensitivity of organic compounds, their rapid metabolism, and susceptibility to reduction. Designing effective multifunctional organic compounds for high-sensitivity MRI remains a challenge. In this discussion, the mechanisms of various non-metallic MRI CAs are explored and an overview of their current status, highlighting both their advantages and potential drawbacks, is provided. The key strategies for creating high-performance MRI CAs are summarized and how different synthetic approaches affect the performance of non-metallic MRI Cas is evaluated. Last, the challenges and future prospects for these promising non-metallic MRI CAs are addressed.
Collapse
Affiliation(s)
- Yanan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuehua Ma
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanqiang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Pengyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chen Dong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 3l5010, China
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Kelly B, Boudreau JE, Beyea S, Brewer K. Molecular imaging of viral pathogenesis and opportunities for the future. NPJ IMAGING 2025; 3:3. [PMID: 39872292 PMCID: PMC11761071 DOI: 10.1038/s44303-024-00056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging is used in clinical and research settings. Since tools to study viral pathogenesis longitudinally and systemically are limited, molecular imaging is an attractive and largely unexplored tool. This review discusses molecular imaging probes and techniques for studying viruses, particularly those currently used in oncology that are applicable to virology. Expanding the repertoire of probes to better detect viral disease may make imaging even more valuable in (pre-)clinical settings.
Collapse
Affiliation(s)
- Brianna Kelly
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
| | - Jeanette E. Boudreau
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- Department of Pathology, Dalhousie University, Halifax, NS Canada
- Beatrice Hunter Cancer Research Institute (BHCRI), Halifax, NS Canada
| | - Steven Beyea
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| | - Kimberly Brewer
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
4
|
Su H, Chan KWY. Design Chemical Exchange Saturation Transfer Contrast Agents and Nanocarriers for Imaging Proton Exchange in Vivo. ACS NANO 2024; 18:33775-33791. [PMID: 39642940 PMCID: PMC11656841 DOI: 10.1021/acsnano.4c05923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 12/09/2024]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) enables the imaging of many endogenous and exogenous compounds with exchangeable protons and protons experiencing dipolar coupling by using a label-free approach. This provides an avenue for following interesting molecular events in vivo by detecting the natural protons of molecules, such as the increase in amide protons of proteins in brain tumors and the concentration of drugs reaching the target site. Neither of these detections require metallic or radioactive labels and thus will not perturb the molecular events happening in vivo. Yet, magnetization transfer processes such as chemical exchange and dipolar coupling of protons are sensitive to the local environment. Hence, the use of nanocarriers could enhance the CEST contrast by providing a relatively high local concentration of contrast agents, considering the portion of the protons available for exchange, optimizing the exchange rate, and utilizing molecular interactions. This review provides an overview of these factors to be considered for designing efficient CEST contrast agents (CAs), and the molecular events that can be imaged using CEST MRI during disease progression and treatment, as well as the nanocarriers for drug delivery and distribution for the evaluation of treatments.
Collapse
Affiliation(s)
- Haoyun Su
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
- Hong
Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Kannie W. Y. Chan
- Department
of Biomedical Engineering, City University
of Hong Kong, Hong Kong, China
- Hong
Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell
H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- City
University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung
Biomedical Sciences Centre, City University
of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
6
|
Ding J, He L, Yang L, Cheng L, Zhao Z, Luo B, Jia Y. Novel Nanoprobe with Combined Ultrasonography/Chemical Exchange Saturation Transfer Magnetic Resonance Imaging for Precise Diagnosis of Tumors. Pharmaceutics 2023; 15:2693. [PMID: 38140034 PMCID: PMC10747786 DOI: 10.3390/pharmaceutics15122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Given that cancer mortality is usually due to a late diagnosis, early detection is crucial to improve the patient's results and prevent cancer-related death. Imaging technology based on novel nanomaterials has attracted much attention for early-stage cancer diagnosis. In this study, a new block copolymer, poly(ethylene glycol)-poly(l-lactide) diblock copolymer (PEG-PLLA), was synthesized by the ring-opening polymerization method and thoroughly characterized using Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (H-NMR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The obtained PEG-PLLA was used to prepare nanoparticles encapsulated with perfluoropentane and salicylic acid by the emulsion-solvent evaporation method, resulting in a new dual-mode nano-image probe (PEG-PLLA@SA·PFP). The zeta potential and mean diameter of the obtained nanoparticles were measured using dynamic light scattering (DLS) with a Malvern Zetersizer Nano. The in vitro biocompatibility of the PEG-PLLA nanoparticles was evaluated with cell migration, hemolysis, and cytotoxicity assays. Ultrasonic imaging was performed using an ultrasonic imaging apparatus, and chemical exchange saturation transfer (CEST) MRI was conducted on a 7.0 T animal scanner. The results of IR and NMR confirmed that the PEG-PLLA was successfully synthesized. The particle size and negative charge of the nanoparticles were 223.8 ± 2.5 nm and -39.6 ± 1.9 mV, respectively. The polydispersity of the diameter was 0.153 ± 0.020. These nanoparticles possessed good stability at 4 °C for about one month. The results of cytotoxicity, cell migration, and hemolysis assays showed that the carrier material was biocompatible. Finally, PEG-PLLA nanoparticles were able to significantly enhance the imaging effect of tumors by the irradiation of ultrasound and saturation by a radiofrequency pulse, respectively. In conclusion, these nanoparticles exhibit promising dual-mode capabilities for US/CEST MR imaging.
Collapse
Affiliation(s)
- Jieqiong Ding
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Liu He
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Lin Yang
- Department of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China;
| | - Liyuan Cheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Zhiwei Zhao
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China;
| | - Binhua Luo
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; (J.D.); (L.H.); (L.C.)
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441021, China
| |
Collapse
|