1
|
Choi K, Lee G, Lee MG, Hwang HJ, Lee K, Lee Y. Bio-Inspired Ionic Sensors: Transforming Natural Mechanisms into Sensory Technologies. NANO-MICRO LETTERS 2025; 17:180. [PMID: 40072809 PMCID: PMC11904071 DOI: 10.1007/s40820-025-01692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell. Inspired by the biological principles of sensory systems, recent advancements in electronics have led to a wide range of applications in artificial sensors. In the current review, we highlight recent developments in artificial sensors inspired by biological sensory systems utilizing soft ionic materials. The versatile characteristics of these ionic materials are introduced while focusing on their mechanical and electrical properties. The features and working principles of natural and artificial sensing systems are investigated in terms of six categories: vision, tactile, hearing, gustatory, olfactory, and proximity sensing. Lastly, we explore several challenges that must be overcome while outlining future research directions in the field of soft ionic sensors.
Collapse
Affiliation(s)
- Kyongtae Choi
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Gibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Min-Gyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Jae Hwang
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Kibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Younghoon Lee
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
2
|
Datta D, Colaco V, Bandi SP, Dhas N, Janardhanam LSL, Singh S, Vora LK. Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications. ACS Biomater Sci Eng 2025; 11:1338-1372. [PMID: 39999055 PMCID: PMC11897956 DOI: 10.1021/acsbiomaterials.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in the number of stimuli-responsive polymers, also known as smart polymers, has significantly advanced their applications in various fields. These polymers can respond to multiple stimuli, such as temperature, pH, solvent, ionic strength, light, and electrical and magnetic fields, making them highly valuable in both the academic and industrial sectors. Recent studies have focused on developing hydrogels with self-healing properties that can autonomously recover their structural integrity and mechanical properties after damage. These hydrogels, formed through dynamic covalent reactions, exhibit superior biocompatibility, mechanical strength, and responsiveness to stimuli, particularly pH changes. However, conventional hydrogels are limited by their weak and brittle nature. To address this, ionizable moieties within polyelectrolytes can be tuned to create ionically cross-linked hydrogels, leveraging natural polymers such as alginate, chitosan, hyaluronic acid, and cellulose. The integration of ionic liquids into these hydrogels enhances their mechanical properties and conductivity, positioning them as significant self-healing agents. This review focuses on the emerging field of stimuli-responsive ionic-based hydrogels and explores their potential in dermal applications and tissue engineering.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Leela Sai Lokesh Janardhanam
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang
Mai 50200, Thailand
| | - Lalitkumar K. Vora
- School of
Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
3
|
Kato T, Tanaka T, Uchida K. Detection of PPB-Level H 2S Concentrations in Exhaled Breath Using Au Nanosheet Sensors with Small Variability, High Selectivity, and Long-Term Stability. ACS Sens 2024; 9:708-716. [PMID: 38336360 PMCID: PMC10898455 DOI: 10.1021/acssensors.3c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024]
Abstract
The continuous monitoring of hydrogen sulfide (H2S) in exhaled breath enables the detection of health issues such as halitosis and gastrointestinal problems. However, H2S sensors with high selectivity and parts per billion-level detection capability, which are essential for breath analysis, and facile fabrication processes for their integration with other devices are lacking. In this study, we demonstrated Au nanosheet H2S sensors with high selectivity, ppb-level detection capability, and high uniformity by optimizing their fabrication processes: (1) insertion of titanium nitride (TiN) as an adhesion layer to prevent Au agglomeration on the oxide substrate and (2) N2 annealing to improve nanosheet crystallinity. The fabricated Au nanosheets successfully detected H2S at concentrations as low as 5.6 ppb, and the estimated limit of detection was 0.5 ppb, which is superior to that of the human nose (8-13 ppb). In addition, the sensors detected H2S in the exhaled breath of simulated patients at concentrations as low as 175 ppb while showing high selectivity against interfering molecules, such as H2, alcohols, and humidity. Since Au nanosheets with uniform sensor characteristics enable easy device integration, the proposed sensor will be useful for facile health checkups based on breath analysis upon its integration into mobile devices.
Collapse
Affiliation(s)
- Taro Kato
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takahisa Tanaka
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ken Uchida
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Zhi H, Wang F, Zhang X, Cai Q, Chen M, Shi Y, Feng L. Green, pH-Sensitive, Highly Stretchable, and Hydrogen Bond-Dominated Ionogel for Wound Healing Activity. ACS APPLIED BIO MATERIALS 2024; 7:498-507. [PMID: 38149601 DOI: 10.1021/acsabm.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Traditional hydrogel dressings generally have poor mechanical properties and stability when subjected to external stress due to the undesirable chain entanglement structure of their single valence bond compositions. Therefore, it is particularly important to develop a type of gel dressing with good mechanical strength, stability, and environment-friendly monitoring. In this work, a transparent, pH-sensitive, highly stretchable, and biocompatible anthocyanidin ionogel dressing was prepared, realizing green and accurate detection. Attributed to the antibacterial activity of the ionic liquid, the biocompatibility of the pectin, and the ability to scavenge free radicals of the anthocyanidin, the ionogel dressing exhibited excellent re-epithelialization in the 14 day wound healing process. Besides, changes in pH values monitoring of the ionogel over 3 days coincided with normal wound exudate. The obtained ionogel also showed good water retention, swelling properties, mechanical stretchability, and 5 week stability, illustrating great potential in wound dressings.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qinxin Cai
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Meng Chen
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yushu Shi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
5
|
Wu Q, Yuan Y, Wang X, Bu X, Jiao M, Liu W, Han C, Hu L, Wang X, Li X. Highly Selective Ionic Gel-Based Gas Sensor for Halogenated Volatile Organic Compound Detection: Effect of Dipole-Dipole Interaction. ACS Sens 2023; 8:4566-4576. [PMID: 37989128 DOI: 10.1021/acssensors.3c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Halogenated volatile organic compounds (abbreviated as X-VOCs) are a class of hazardous gas pollutants that are difficult to detect due to their thermal stability, chemical inertness, and poisoning effect on gas sensors at high temperatures. In this work, room-temperature detection of X-VOCs is achieved using a surface acoustic wave (SAW) gas sensor coated with a 1-ethyl-3-methylimidazolium bis(trifluoromethylsufonyl)imide (EMIM-TFSI)-based ionic gel film. We experimentally verify that the high selectivity of the ionic gel-based SAW gas sensor for X-VOCs is due to the presence of halogen atoms in these gas molecules. Meanwhile, the sensor has very little response to common organic gases such as ethanol, isopropanol, and acetone, reflecting a low cross-sensitivity to nonhalogenated VOCs. This unique advantage shows potential applications in selective detection of X-VOCs and is validated by comparison with a commercial metal oxide semiconductor (MOS) sensor. Furthermore, the internal sensing mechanism is explored by the density functional theory (DFT) method. The simulation results demonstrate that the X-VOC molecules are highly polarized by the inductive effect of halogen atom substitution, which is beneficial for being adsorbed by the EMIM-TFSI ionic liquid via dipole-dipole interaction.
Collapse
Affiliation(s)
- Qiang Wu
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Yubin Yuan
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Xuming Wang
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Xiangrui Bu
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Menglong Jiao
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Weihua Liu
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Chuanyu Han
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| | - Long Hu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoli Wang
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
- School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Li
- School of Microelectronics, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, China
| |
Collapse
|
6
|
Maity A, Milyutin Y, Maidantchik VD, Pollak YH, Broza Y, Omar R, Zheng Y, Saliba W, Huynh T, Haick H. Ultra-Fast Portable and Wearable Sensing Design for Continuous and Wide-Spectrum Molecular Analysis and Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203693. [PMID: 36266981 PMCID: PMC9731699 DOI: 10.1002/advs.202203693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The design and characterization of spatiotemporal nano-/micro-structural arrangement that enable real-time and wide-spectrum molecular analysis is reported and demonestrated in new horizons of biomedical applications, such as wearable-spectrometry, ultra-fast and onsite biopsy-decision-making for intraoperative surgical oncology, chiral-drug identification, etc. The spatiotemporal sesning arrangement is achieved by scalable, binder-free, functionalized hybrid spin-sensitive (<↑| or <↓|) graphene-ink printed sensing layers on free-standing films made of porous, fibrous, and naturally helical cellulose networks in hierarchically stacked geometrical configuration (HSGC). The HSGC operates according to a time-space-resolved architecture that modulate the mass-transfer rate for separation, eluation and detection of each individual compound within a mixture of the like, hereby providing a mass spectrogram. The HSGC could be used for a wide range of applictions, including fast and real-time spectrogram generator of volatile organic compounds during liquid-biopsy, without the need of any immunochemistry-staining and complex power-hungry cryogenic machines; and wearable spectrometry that provide spectral signature of molecular profiles emiited from skin in the course of various dietry conditions.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yana Milyutin
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Vivian Darsa Maidantchik
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yael Hershkovitz Pollak
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Yoav Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Walaa Saliba
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Tan‐Phat Huynh
- Laboratory of Molecular Science and EngineeringFaculty of Science and EngineeringAbo Akademi UniversityHenrikinkatu 2TurkuFI‐20500Finland
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|