1
|
Wang YQ, Liu JH, Li DY, Zhang J, Huang L, Yang JM, Yang T. Two birds with one stone: colorimetric and photothermal dual-mode biosensor based on CoOOH nanorings for detecting β-galactosidase activity and Escherichia coli. Chem Commun (Camb) 2025; 61:7863-7866. [PMID: 40314239 DOI: 10.1039/d5cc00923e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Pathogenic bacterial infections are a serious global public health threats, creating an urgent requirement for the rapid, sensitive, and reliable detection of bacteria. Herein, a multi-colorimetric and portable photothermal dual-mode biosensor with cross-references and self-calibration was established for the analysis of β-galactosidase (β-Gal) and Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Yong Qiong Wang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming 650500, P. R. China.
| | - Jia Hui Liu
- Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, P. R. China
| | - De Yan Li
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming 650500, P. R. China.
| | - Jin Zhang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming 650500, P. R. China.
| | - Long Huang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming 650500, P. R. China.
| | - Jian Mei Yang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming 650500, P. R. China.
| | - Tong Yang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming 650500, P. R. China.
| |
Collapse
|
2
|
Zhuang L, Gong J, Zhang D, Zhang P, Zhao Y, Sun L, Yang J, Zhang Y, Shen Q. Recent advances in metallic and metal oxide nanoparticle-assisted molecular methods for the detection of Escherichia coli. Analyst 2025; 150:1206-1228. [PMID: 40034047 DOI: 10.1039/d4an01495b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The detection of E. coli is of irreplaceable importance for the maintenance of public health and food safety. In the field of molecular detection, metal and metal oxide nanoparticles have demonstrated significant advantages due to their unique physicochemical properties, and their application in E. coli detection has become a cutting-edge focus of scientific research. This review systematically introduces the innovative applications of these nanoparticles in E. coli detection, including the use of magnetic nanoparticles for efficient enrichment of bacteria and precise purification of nucleic acids, as well as a variety of nanoparticle-assisted immunoassays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, colorimetric methods, and fluorescence strategies. In addition, this paper addresses the application of nanoparticles used in nucleic acid tests, including amplification-free and amplification-based assays. Furthermore, the application of nanoparticles used in electrochemical and optical biosensors in E. coli detection is described, as well as other innovative assays. The advantages and challenges of the aforementioned technologies are subjected to rigorous analysis, and a prospective outlook on the future direction of development is presented. In conclusion, this review not only illustrates the practical utility and extensive potential of metal and metal oxide nanoparticles in E. coli detection, but also serves as a scientific and comprehensive reference for molecular diagnostics in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
3
|
Zhan J, Wang S, Li X, Zhang J. Molecular engineering of functional DNA molecules toward point-of-care diagnostic devices. Chem Commun (Camb) 2025; 61:4316-4338. [PMID: 39998439 DOI: 10.1039/d5cc00338e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The pursuit of rapid, sensitive, and specific diagnostic methodologies is imperative across diverse applications, including the detection of pathogens and disease biomarkers, food safety testing and environmental monitoring. Point-of-care testing (POCT) is characterized by its portability, ease of use, rapidity, and affordability, emerging as an attractive alternative for traditional diagnostics. Over recent years, the incorporation of functional DNA (fDNA) into POC diagnostic devices has emerged as a groundbreaking advancement, significantly enhancing sensitivity, specificity, and user-friendliness. In this review, we explore the innovative applications of fDNA in POC devices, highlighting its potential to revolutionize diagnostics by providing rapid, portable, and precise solutions. We discuss the unique advantages of fDNA, including its stability in complex biological matrices and its ability to recognize a wide range of targets. Furthermore, we explore the potential synergy between fDNA and cutting-edge technologies, such as nanotechnology and artificial intelligence (AI), to forge a path toward more personalized and accessible healthcare solutions. Despite significant progress, challenges remain in translating these innovations from the bench to the clinic. This review aims to provide a comprehensive overview of the current status of fDNA-based POCT devices and future directions for their development, emphasizing their critical role in meeting the global demand for accessible, efficient, and precise diagnostic solutions.
Collapse
Affiliation(s)
- Jiayin Zhan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| | - Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Liu S, Rahman MR, Wu H, Qin W, Wang Y, Su G. Development and application of hydrogels in pathogenic bacteria detection in foods. J Mater Chem B 2025; 13:1229-1251. [PMID: 39690945 DOI: 10.1039/d4tb01341g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Hydrogels are 3D networks of water-swollen hydrophilic polymers. It possesses unique properties (e.g., carrying biorecognition elements and creating a micro-environment) that make it highly suitable for bacteria detection (e.g., expedited and effective bacteria detection) and mitigation of bacterial contamination in specific environments (e.g., food systems). This study first introduces the materials used to create hydrogels for bacteria detection and the mechanisms for detection. We also summarize different hydrogel-based detection methods that rely on external stimuli and biorecognition elements, such as enzymes, temperature, pH, antibodies, and oligonucleotides. Subsequently, a range of widely utilized bacterial detection technologies were discussed where recently hydrogels are being used. These modifications allow for precise, real-time diagnostics across varied food matrices, responding effectively to industry needs for sensitivity, scalability, and portability. After highlighting the utilization of hydrogels and their role in these detection techniques, we outline limitations and advancements in the methods for the detection of foodborne pathogenic bacteria, especially the potential application of hydrogels in the food industry.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Md Rashidur Rahman
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China.
| |
Collapse
|
5
|
Yu ZJ, Deng DH, Liang SR, Huang YL, Yi XY. Overview of Gas-Generating-Reaction-Based Immunoassays. BIOSENSORS 2024; 14:580. [PMID: 39727844 PMCID: PMC11726966 DOI: 10.3390/bios14120580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Point-of-care (POC) immunoassays have become convincing alternatives to traditional immunosensing methods for the sensitive and real-time detection of targets. Immunoassays based on gas-generating reactions were recently developed and have been used in various fields due to their advantages, such as rapid measurement, direct reading, simple operation, and low cost. Enzymes or nanoparticles modified with antibodies can effectively catalyze gas-generating reactions and convert immunorecognition events into gas pressure signals, which can be easily recorded by multifunctional portable devices. This article summarizes the advances in gas-generating-reaction-based immunoassays, according to different types of signal output systems, including distance-based readout, pressure differential, visualized detection, and thermal measurement. The review mainly focuses on the role of photothermal materials and the working principle of immunoassays. In addition, the challenges and prospects for the future development of gas-generating-reaction-based immunoassays are briefly discussed.
Collapse
Affiliation(s)
- Zhao-Jiang Yu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - De-Hua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Si-Rui Liang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
| | - Ya-Liang Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Z.-J.Y.); (S.-R.L.)
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| | - Xin-Yao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
6
|
Tang J, Zhuo D, Chen J, Xiao J, Zeng R, Tan C, Xiong X, Zou Z. Heating and ultraviolet irradiation: Gas pressure meter-based analytical system for on-site and rapid monitoring of permanganate index (COD Mn). WATER RESEARCH 2024; 268:122758. [PMID: 39531796 DOI: 10.1016/j.watres.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Permanganate index (CODMn) is one of the important indicators of surface water quality measurement. Herein, a portable analytical system was developed for on-site and rapid analysis of CODMn, organic substances in water were oxidized and transformed into gases, so that CODMn concentration was converted into a change of gas pressure signal, the pressure signal change was further detected by a gas pressure meter. Heating method and ultraviolet (UV) irradiation method were used as assisting technologies for oxidization of organic substances by acidic KMnO4, a linear range of 2-150 mg l-1 and a detectable limit of 2 mg l-1 were obtained. Those methods were further applied to the detection of CODMn in various water samples (lake waters and domestic sewage) and certified reference water samples (BWZ 6974-2016C and BWZ 7617-2016), with recoveries of 89-111 %. Among them, a portable analytical system based on UV irradiation gas pressure meter was further established and used for the analysis of CODMn in field. It is a promising analytical system/device for CODMn monitoring in field, offering advantages of low-cost, easy-operation, portability and rapidness.
Collapse
Affiliation(s)
- Jiayuan Tang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Dali Zhuo
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jihong Chen
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jing Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Ronghua Zeng
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Zhirong Zou
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China.
| |
Collapse
|
7
|
Tang J, Zhuo D, Dong X, Xiao J, Zhang S, Xiong X, Tan C, Zou Z. Bottle-in-bottle reaction device: Portable gas pressure meter for rapid and on-site analysis of oxalate in spinach and tea beverages. Food Chem X 2024; 23:101638. [PMID: 39113741 PMCID: PMC11305198 DOI: 10.1016/j.fochx.2024.101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
A gas pressure meter-based portable/miniaturized analytical kit was established for rapid and on-site detection of oxalate. Potassium permanganate (KMnO4) and oxalate solution were mixed together in bottle-in-bottle reaction device, a simple oxidation reaction process occurred within 6 min and carbon dioxide (CO2) was generated, inducing the pressure of the sealed bottle changed, which was measured by a portable gas pressure meter. A detectable range of 0.1-6 μmol mL-1 and a detection limit of 0.064 μmol mL-1 were achieved. The proposed analytical method was further used for the analysis of several real samples (spinach, beverages and water samples), with the recoveries of 89-111%. Considering the interferences from the complicated matrix, calcium chloride (CaCl2) was served as a precipitant, oxalate (C2O4 2-) was precipitated with Ca2+ to form precipitation (CaC2O4), CaC2O4 was then separated from the matrix by centrifuge/filter, eliminating the interferences. It is a rapid, easy-used and interference-free analytical system/device for oxalate on-site and real time analysis.
Collapse
Affiliation(s)
- Jiayuan Tang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Dali Zhuo
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiaoyu Dong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jing Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Shu Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China
| | - Zhirong Zou
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, Sichuan, 644000, China
| |
Collapse
|
8
|
Huang J, Ma Y, Jiang X, Xian J, Fu Z, Ouyang H. Robust Luminescent Pyrene-Based Metal-Organic Framework Hydrogel as a pH-Responsive Fluorescence Emitter for Sensitive Immunoassay of Cardiac Troponin I. Anal Chem 2024; 96:15042-15049. [PMID: 39219053 DOI: 10.1021/acs.analchem.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Despite many luminescent advantages including outstanding absorption coefficient and high quantum yield, pyrene and its derivatives have been suffering from a dramatic aggregation-caused quenching (ACQ) effect. Although the dramatic ACQ effect of pyrene-based fluorophores has been restrained in pyrene-doped metal-organic frameworks (MOFs), the low loading of fluorescent (FL) units substantially impedes the improved luminescent behaviors. Herein, pyrene-based MOFs hydrogel was synthesized with a high loading of pyrene as the unique organic linker blocks instead of a dopant in MOFs. The gel matrix contributed to rigidifying the location of the FL emitters and achieving intensive FL emission and high luminescent stability and therefore efficiently overcoming the ACQ effect. Furthermore, the protonation of pyrene in the MOFs hydrogel remarkably decreased the luminescent intensity, which endowed the FL hydrogel with highly pH-responsive activity in the broad range (pH 4-10). Interestingly, glucose oxidase was immobilized into ZIF-8 as a highly efficient luminescent quencher, which contributed to catalyzing the form of gluconic acid and thus drastically quenching the FL signal of the MOFs hydrogel. Furthermore, the emitter-quencher pair of pyrene-based MOFs hydrogel and glucose oxidase was successfully employed to develop an ultrasensitive FL immunoassay platform for cardiac troponin I (as a model analyte). The limit of detection for cardiac troponin I was 5.2 pg/mL (3σ). The proof-of-principle study demonstrated the thrilling auxiliary effect of tailorable MOFs hydrogel on boosting the feasibility of aqueous insoluble FL chromophores for trace analysis.
Collapse
Affiliation(s)
- Junyi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuchan Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Yang DN, Geng S, Jing R, Zhang H. Recent Developments in Personal Glucose Meters as Point-of-Care Testing Devices (2020-2024). BIOSENSORS 2024; 14:419. [PMID: 39329794 PMCID: PMC11430212 DOI: 10.3390/bios14090419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Point-of-care testing (POCT) is a contemporary diagnostic approach characterized by its user-friendly nature, cost efficiency, environmental compatibility, and lack of reliance on professional experts. Therefore, it is widely used in clinical diagnosis and other analytical testing fields to meet the demand for rapid and convenient testing. The application of POCT technology not only improves testing efficiency, but also brings convenience and benefits to the healthcare industry. The personal glucose meter (PGM) is a highly successful commercial POCT tool that has been widely used not only for glucose analysis, but also for non-glucose target detection. In this review, the recent advances from 2020 to 2024 in non-glucose target analysis for PGMs as POCT devices are summarized. The signal transduction strategies for non-glucose target analysis based on PGMs, including enzymatic transduction, nanocarrier transduction (enzyme or glucose), and glucose consumption transduction are briefly introduced. Meanwhile, the applications of PGMs in non-glucose target analysis are outlined, encompassing biomedical, environmental, and food analysis, along with other diverse applications. Finally, the prospects of and obstacles to employing PGMs as POCT tools for non-glucose target analysis are discussed.
Collapse
Affiliation(s)
- Dan-Ni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| | - Shan Geng
- The Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Rong Jing
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China; (D.-N.Y.); (R.J.)
| |
Collapse
|
10
|
Sui JH, Wei YY, Ren XY, Xu ZR. Pressure and multicolor dual-mode detection of mucin 1 based on the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124352. [PMID: 38678841 DOI: 10.1016/j.saa.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Mucin 1 is an essential tumor biomarker, and developing cost-effective and portable methods for mucin 1 detection is crucial in resource-limited settings. Herein, the pH-regulated dual-enzyme mimic activities of manganese dioxide nanosheets were demonstrated, which were integrated into an aptasensor for dual-mode detection of mucin 1. Under acidic conditions, manganese dioxide nanosheets with oxidase mimic activities catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine sulfate, producing visible multicolor signals; while under basic conditions, manganese dioxide nanosheets with catalase mimic activities were used as catalyst for the decomposition of hydrogen peroxide, generating gas pressure signals. The proposed method allows the naked eye detection of mucin 1 through multicolor signal readout and the quantitative detection of mucin 1 with a handheld pressure meter or a UV-vis spectrophotometer. The study demonstrates that manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities can facilitate multidimensional transducing signals. The use of manganese dioxide nanosheets for the transduction of different signals avoids extra labels and simplifies the operation procedures. Besides, the signal readout mode can be selected according to the available detection instruments. Therefore, the use of manganese dioxide nanosheets with pH-regulated dual-enzyme mimic activities for dual-signal readout provides a new way for mucin 1 detection.
Collapse
Affiliation(s)
- Jin-Hong Sui
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yun-Yun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xiu-Yan Ren
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
11
|
You H, Ma N, Li T, Yu Z, Gan N. Versatile Platinum Nanoparticles-Decorated Phage Nanozyme Integrating Recognition, Bacteriolysis, and Catalysis Capabilities for On-Site Detection of Foodborne Pathogenic Strains Vitality Based on Bioluminescence/Pressure Dual-Mode Bioassay. Anal Chem 2024; 96:8782-8790. [PMID: 38728110 DOI: 10.1021/acs.analchem.4c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Sensitive and on-site discrimination of live and dead foodborne pathogenic strains remains a significant challenge due to the lack of appropriate assay and signal probes. In this work, a versatile platinum nanoparticle-decorated phage nanozyme (P2@PtNPs) that integrated recognition, bacteriolysis, and catalysis was designed to establish the bioluminescence/pressure dual-mode bioassay for on-site determination of the vitality of foodborne pathogenic strains. Benefiting from the bacterial strain-level specificity of phage, the target Salmonella typhimurium (S.T) was specially captured to form sandwich complexes with P2@PtNPs on another phage-modified glass microbead (GM@P1). As the other part of the P2@PtNPs nanozyme, the introduced PtNPs could not only catalyze the decomposition of hydrogen peroxide to generate a significant oxygen pressure signal but also produce hydroxyl radicals around the target bacteria to enhance the bacteriolysis of phage and adenosine triphosphate release. It significantly improved the bioluminescence signal. The two signals corresponded to the total and live target bacteria counts, so the dead target could be easily calculated from the difference between the total and live target bacteria counts. Meanwhile, the vitality of S.T was realized according to the ratio of live and total S.T. Under optimal conditions, the application range of this proposed bioassay for bacterial vitality was 102-107 CFU/mL, with a limit of detections for total and live S.T of 30 CFU/mL and 40 CFU/mL, respectively. This work provides an innovative and versatile nanozyme signal probe for the on-site determination of bacterial vitality for food safety.
Collapse
Affiliation(s)
- Hang You
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Nannan Ma
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Tianhua Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
12
|
Tang J, Liu J, Wang F, Yao Y, Hu R. Colorimetric and photothermal dual-mode aptasensor with redox cycling amplification for the detection of ochratoxin A in corn samples. Food Chem 2024; 439:137968. [PMID: 38043279 DOI: 10.1016/j.foodchem.2023.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
Ochratoxin A (OTA) detection is critical for public health safety. This study proposes a G-quadruplex-Hemin/iodide (G4-Hemin/I-)-mediated non-enzyme redox cycling amplification (RCA) system for dual-modal (colorimetric and photothermal thermometer) OTA analysis. The proposed aptasensor platform for point-of-care testing employs a common thermometer for quantitative signal readouts. The OTA aptamer folds into a G4 structure, which significantly enhances the catalytic activity in the presence of I- after RCA reaction. Moreover, a notable temperature enhancement causes color changes, providing an ultrasensitive and label-free platform for OTA detection. Further, the designed sensor was applied to OTA content determination in corn samples and achieved satisfactory results compared to a commercial enzyme-linked immunoassay kit. The proposed dual-mode aptasensor is simple, highly sensitive (1 pg/mL for colorimetric method, 0.8 pg/mL for photothermal method), selective, and suitable for low-cost instrument-free bioanalysis in low-resource settings.
Collapse
Affiliation(s)
- Jian Tang
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Jiali Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Fupeng Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Yaochun Yao
- National Engineering Research Center of Vacuum Metallurgy, Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
13
|
Li J, Yu C, Yuan H, Guo T, Wang L, Fu Z. Phages modified hydrogel pellet assembled in 3D printed both-in-one device for detecting Pseudomonas aeruginosa based on colorimetric and pressure readout modes. J Pharm Biomed Anal 2024; 240:115931. [PMID: 38183730 DOI: 10.1016/j.jpba.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) with noticeable drug-resistance profile is one of the most pernicious pathogens that attracts major public health concerns. Herein, a 3D printed device combined with hydrogel pellet modified with phages was designed for point-of-care testing (POCT) of this pathogen with both colorimetric and pressure readout modes. A P. aeruginosa phage belonging to the family of Podoviridae was isolated from river water and noted as vB_PaeP-JZ1 (JZ1). Due to its host specificity, phage JZ1 was used as a recognizing agent for modifying the hydrogel pellet, and the modified hydrogel pellet was assembled into the 3D printed device to act as the sensing interface. Polymyxin B (PMB) was tagged with Pd@Pt core-shell nanodendrites (Pd@PtNDs) showing excellent peroxidase-like activity to act as the colorimetric and pressure signal tracer. P. aeruginosa can be quantified within the concentration ranges of 2.6 × 103 cfu mL-1 - 2.6 × 108 cfu mL-1 and 2.6 × 102 cfu mL-1 - 2.6 × 107 cfu mL-1 with colorimetric and pressure readout modes, respectively. The both modes can achieve quantitation of P. aeruginosa within 25 min. Thus the "both-in-one" 3D printed device with dual-mode readout function offers a rapid, sensitive, and specific platform for POCT of pathogenic bacteria.
Collapse
Affiliation(s)
- Jizhou Li
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Yu
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongwei Yuan
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ting Guo
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Wang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Sun X, Ding C, Qin M, Li J. Hydrogel-Based Biosensors for Bacterial Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306960. [PMID: 37884473 DOI: 10.1002/smll.202306960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Hydrogels are known to have the advantages such as good biodegradability, biocompatibility, and easy functionalization, making them ideal candidates for biosensors. Hydrogel-based biosensors that respond to bacteria-induced microenvironmental changes such as pH, enzymes, antigens, etc., or directly interact with bacterial surface receptors, can be applied for early diagnosis of bacterial infections, providing information for timely treatment while avoiding antibiotic abuse. Furthermore, hydrogel biosensors capable of both bacteria diagnosis and treatment will greatly facilitate the development of point-of-care monitoring of bacterial infections. In this review, the recent advancement of hydrogel-based biosensors for bacterial infection is summarized and discussed. First, the biosensors based on pH-sensitive hydrogels, bacterial-specific secretions-sensitive hydrogels, and hydrogels directly in contact with bacterial surfaces are presented. Next, hydrogel biosensors capable of detecting bacterial infection in the early stage followed by immediate on-demand treatment are discussed. Finally, the challenges and future development of hydrogel biosensors for bacterial infections are proposed.
Collapse
Affiliation(s)
- Xiaoning Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
15
|
Chen Y, Huang Y, Chen S, Gao L, Zhang S, Dai H, Zeng B. A pressure-colorimetric multimode system with photothermal activated multiple rolling signal amplification for ovarian cancer biomarker detection. Talanta 2023; 265:124876. [PMID: 37390673 DOI: 10.1016/j.talanta.2023.124876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Utilizing the photothermal effect to activate enzyme activity, realize signal conversion and amplification show promising prospects in biosensing. Herein, a pressure-colorimetric multi-mode bio-sensor was proposed through the multiple rolling signal amplification strategy of photothermal control. Under NIR light radiation, the Nb2C MXene labeled photothermal probe caused notable temperature elevation on a multi-functional signal conversion paper (MSCP), leading to decomposition of thermal responsive element and in-situ formation of Nb2C MXene/Ag-Sx hybrid. The generation of Nb2C MXene/Ag-Sx hybrid accompanied with valid color change from pale yellow to dark brown on MSCP. Moreover, the Ag-Sx as a signal amplification element enhanced the NIR light absorption to further improve the photothermal effect of Nb2C MXene/Ag-Sx thereby induce cyclic in situ production of Nb2C MXene/Ag-Sx hybrid with rolling enhanced photothermal effect. Subsequently, the continuously enhanced photothermal effect rolling activated catalase-like activity of Nb2C MXene/Ag-Sx, which accelerated the decomposition of H2O2 and promoted the pressure elevation. Therefore, the rolling-enhanced photothermal effect and rolling activated catalase-like activity of Nb2C MXene/Ag-Sx considerately amplified the pressure and color change. Making full use of multi-signal readout conversion and rolling signal amplification, accurate results can be obtained in a short time, whether in the laboratory or in the patient's homes.
Collapse
Affiliation(s)
- Yanjie Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| | - Yitian Huang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Sisi Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China
| | - Lihong Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China
| | - Hong Dai
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang, 32400, China.
| | - Baoshan Zeng
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
16
|
Xue J, Yang H, Li J, Ouyang H, Fu Z. Smartphone-Based Pressure Signal Readout Device Combined with Bidirectional Immunochromatographic Test Strip for Dual-Analyte Detection. Anal Chem 2023; 95:1359-1365. [PMID: 36575992 DOI: 10.1021/acs.analchem.2c04322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pressure has been a facile signal readout mode for developing point-of-care testing devices due to the attractive features of portability, accessibility, rapidity, and affordability. Herein, a pressure signal readout device was designed by integrating two homemade needle-type piezoresistive transducers, a controller for a thin-film piezoresistive sensor and a smartphone. Meanwhile, a bidirectional immunochromatographic test strip was designed as an immunoreaction platform for dual-analyte detection. Using PdCuPt nanoparticles with catalase-mimic activity as signal tags, the pressure signals triggered by catalyzed aerogenous reaction were monitored by the pressure signal readout device and read on a smartphone with the Bluetooth module. In this proof-of-principle work, imidacloprid and carbendazim were detected as model analytes. The dynamic ranges for quantitating imidacloprid and carbendazim are 20 pg mL-1 to 50 ng mL-1 and 50 pg mL-1 to 50 ng mL-1, respectively. The whole immunoassay process was completed within 16 min. The recovery values for imidacloprid and carbendazim spiked into herbal medicines are 82.0-110.0 and 84.0-116.0%, respectively, verifying its reliability for real sample detection. As the smartphone APP and controller for a thin-film piezoresistive sensor contain 12 signal channels, the system can be easily extended to meet the demand for high-throughput screening.
Collapse
Affiliation(s)
- Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Honglin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Jizhou Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|