1
|
Yu X, Nishimura F, Hidaka T, Du ZA, Wang F. Temperature effects on nitrogen removal and N 2O emissions in anammox reactors. BIORESOURCE TECHNOLOGY 2025; 419:132022. [PMID: 39732374 DOI: 10.1016/j.biortech.2024.132022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Mainstream anammox faces challenges in adapting to non-optimal temperatures and managing greenhouse gas emissions. This study investigates nitrogen removal and N2O emissions in attached-growth anammox reactors subjected to rapid temperature shifts (15-55 °C). Temperature reductions to 15-25 °C had minimal impact on the anammox bacterial populations, with nitrogen removal rates of 0.37±0.11 gN/(L⋅d) and 0.88±0.10 gN/(L⋅d) at 15 °C and 25 °C, respectively. In contrast, increasing temperatures to 45-55 °C significantly diminished both anammox biomass and bioactivity. The reactor at 35 °C exhibited the lowest N2O emissions (< 1.0 mgN/(L⋅d)), while emissions rose to approximately 5.0 mgN/(L⋅d) at 15 °C and 3.4 mgN/(L⋅d) at 55 °C (during 295-395 d), primarily due to denitrification performed by coexisting ammonia-oxidizing bacteria and denitrifying microbes. This study provides insights into temperature adaptability and N2O emission risks, supporting mainstream anammox applications.
Collapse
Affiliation(s)
- Xiaolong Yu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; School of Environmental Science and Engineering, Southern University of Science and Technology, No.1088, Xueyuan Road, Nanshan District, Shenzhen 518055, China.
| | - Fumitake Nishimura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu 520-0811, Japan
| | - Taira Hidaka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C1, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan
| | - Zi-Ang Du
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, C1, Kyoto daigaku-Katsura, Kyoto 615-8540, Japan
| | - Feng Wang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| |
Collapse
|
2
|
Oliveira CLBD, Cassimiro JB, Silveira DDS, Belisario MP, Heinrichs R, Cassim BMAR, Batista MA, Moro E. Potential of enhanced efficiency nitrogen fertilizers in reducing nitrogen and carbon losses in a sandy soil integrated crop-livestock system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:122898. [PMID: 39509976 DOI: 10.1016/j.jenvman.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
The demand for food is increasing, which poses significant challenges to humanity's sustainable and sufficient food production. Using fertilizers with new technologies with a low environmental impact is becoming increasingly necessary. In this context, the industry has been creating alternatives to optimize the use of nitrogen (N) fertilizers, with the improvement of urea being crucial for sustainable agricultural production. The objective of this study was to assess the use of fertilizers with integrated technology, specifically urea NBPT + Duromide and formaldehyde urea, aiming to reduce N losses through ammonia (NH3-N) volatilization and, consequently, mitigate carbon dioxide (CO2) emissions in the integrated crop-livestock system (ICLS), thereby addressing the impacts of global warming. Evaluations were conducted over three agricultural years (2020/2021, 2021/2022, and 2022/2023). The pasture used was Urochloa Brizhanta cv. marandu, and soybeans (Glycine max L) were cultivated. The experimental design was a randomized complete block with four replications in a 3 × 4 factorial arrangement. The treatments consisted of three N sources: conventional urea (UrConv) for immediate release, formaldehyde urea (UrFormaldehyde) for slow release, and urea with urease inhibitor and Duromide technology (UrDuromide), combined with four rates (0, 100, 200, and 400 kg ha-1 of N). NH3-N volatilization data were subjected to nonlinear regression using a logistic model. NH3-N volatilization losses varied according to the rate and fertilizer, reaching up to 33% in UrConv. UrDuromide exhibited reduced efficiency over the evaluated years compared to UrConv, reducing losses by 52% in the first year, 46% in the second, and only 5% in the third. UrFormaldehyde showed less variability, ranging between 57% and 45% reduction in NH3-N losses. The effects on TOC and CO2 emissions followed similar trends, with UrConv causing the highest CO2 emissions and more significant TOC accumulation. UrFormaldehyde reduced CO2 by up to 8% compared to UrConv, while UrDuromide reduced it by 6% compared to UrConv in greenhouse gas emissions and consequently lower soil organic carbon accumulation. In conclusion, using technology to enhance efficiency in nitrogen fertilizers showed promising results in reducing greenhouse gas emissions, offering hope for a sustainable future and making it a viable alternative to conventional urea sources.
Collapse
Affiliation(s)
- Clayton Luis Baravelli de Oliveira
- Department of Agronomy, São Paulo Western University, Raposo Tavares Highway, km 572, Presidente Prudente, São Paulo, 19067-175, Brazil.
| | - Juliana Bonfim Cassimiro
- Department of Agronomy, São Paulo Western University, Raposo Tavares Highway, km 572, Presidente Prudente, São Paulo, 19067-175, Brazil
| | - Daniel da Silva Silveira
- Department of Agronomy, São Paulo Western University, Raposo Tavares Highway, km 572, Presidente Prudente, São Paulo, 19067-175, Brazil
| | - Matheus Parra Belisario
- Department of Agronomy, São Paulo Western University, Raposo Tavares Highway, km 572, Presidente Prudente, São Paulo, 19067-175, Brazil
| | - Reges Heinrichs
- Department of Crop Science, São Paulo State University - Unesp, Rodovia SP 294, km 651, Dracena-SP, 17900-095, Brazil
| | - Bruno Maia Abdo Rahmen Cassim
- University of São Paulo, "Luiz de Queiroz", College of Agriculture, Department of Soil Science, Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - Marcelo Augusto Batista
- Department of Agronomy, Maringá State University, Colombo Avenue, 5790, Zone 07, Maringá-PR, 87020900, Brazil
| | - Edemar Moro
- Department of Agronomy, São Paulo Western University, Raposo Tavares Highway, km 572, Presidente Prudente, São Paulo, 19067-175, Brazil
| |
Collapse
|
3
|
Ahmad N, Rasheed S, Mohyuddin A, Fatima B, Nabeel MI, Riaz MT, Najam-Ul-Haq M, Hussain D. 2D MXenes and their composites; design, synthesis, and environmental sensing applications. CHEMOSPHERE 2024; 352:141280. [PMID: 38278447 DOI: 10.1016/j.chemosphere.2024.141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Novel 2D layered MXene materials were first reported in 2011 at Drexel University. MXenes are widely used in multidisciplinary applications due to their anomalous electrical conductivity, high surface area, and chemical, mechanical, and physical properties. This review summarises MXene synthesis and applications in environmental sensing. The first section describes different methods for MXene synthesis, including fluorinated and non-fluorinated methods. MXene's layered structure, surface terminal groups, and the space between layers significantly impact its properties. Different methods to separate different MXene layers are also discussed using various intercalation reagents and commercially synthesized MXene without compromising the environment. This review also explains the effect of MXene's surface functionalization on its characteristics. The second section of the review describes gas and pesticide sensing applications of Mxenes and its composites. Its good conductivity, surface functionalization with negatively charged groups, intrinsic chemical nature, and good mechanical stability make it a prominent material for room temperature sensing of environmental samples, such as polar and nonpolar gases, volatile organic compounds, and pesticides. This review will enhance the young scientists' knowledge of MXene-based materials and stimulate their diversity and hybrid conformation in environmental sensing applications.
Collapse
Affiliation(s)
- Naseer Ahmad
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sufian Rasheed
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, 60000, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ikram Nabeel
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Tariq Riaz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological, Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
4
|
Yang Y, Zong B, Xu Q, Li Q, Li Z, Mao S. Discriminative Analysis of NO x Gases by Two-Dimensional Violet Phosphorus Field-Effect Transistors. Anal Chem 2023. [PMID: 38019807 DOI: 10.1021/acs.analchem.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Two-dimensional violet phosphorus (VP) has emerged as a new sensing material in various sensing applications due to its unique electrical properties and high stability among allotropes of phosphorus. Currently, the research of the VP-based analysis method is at the early stage. In this work, a VP nanosheet-based field-effect transistor (FET) sensor is reported for the detection of NO2 and N2O gases with extraordinary sensing performance. This sensor can achieve excellent sensitivity of up to ∼50% current change/ppm and a low detection limit of 5.9 ppb and enables the NO2 analysis in various mixed gases. Moreover, this sensor can effectively distinguish between NO2 and N2O gases, which is a big challenge for current FET or chemiresistor gas sensors. The different sensing behaviors of the VP sensor to NO2 and N2O gases have been investigated, and the mechanism study shows that the adsorption energy, bond length of the gas molecule on the VP surface, and the decomposition of N2O led to the differential responses. This work is one of the pioneer studies of VP gas sensors and presents a new sensing method for the discriminative analysis of NO2 and N2O for greenhouse gas emission monitoring and air quality control.
Collapse
Affiliation(s)
- Yuehong Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Boyang Zong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qikun Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhuo Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Hooshmand S, Kassanos P, Keshavarz M, Duru P, Kayalan CI, Kale İ, Bayazit MK. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. SENSORS (BASEL, SWITZERLAND) 2023; 23:8648. [PMID: 37896744 PMCID: PMC10611361 DOI: 10.3390/s23208648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges.
Collapse
Affiliation(s)
- Sara Hooshmand
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Panagiotis Kassanos
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pelin Duru
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - İzzet Kale
- Applied DSP and VLSI Research Group, Department of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK;
| | - Mustafa Kemal Bayazit
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| |
Collapse
|
6
|
Mirica KA. Materials Matter: Advancing Sensor Science through Innovation in Materials Chemistry. ACS Sens 2022; 7:3580-3581. [PMID: 36562175 DOI: 10.1021/acssensors.2c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|