1
|
Cai J, Cao M, Bai J, Sun M, Ma C, Emran MY, Kotb A, Bo X, Zhou M. Flexible epidermal wearable sensor for Athlete's sweat biomarkers monitoring. Talanta 2025; 282:126986. [PMID: 39383716 DOI: 10.1016/j.talanta.2024.126986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Wearable sweat sensors hold great promise for the monitoring of athletic sweat biomarkers that are reflective of physical status and the inimitable feature of wearable sensors to conduct dynamic sweat analysis in situ. However, the preparative methods of wearable patches for monitoring athlete's biomarkers are often complicated. Here, we demonstrate the first example of "sports lab-on-skin" as a fully integrated epidermal sweat sensor through simple laser engraving and laser cutting methods, which enables on-body and wirelessly measuring sweat Na+, sweat K+, sweat lactate, and initial sweat rate for physical status assessment. We test the performance of the "sports lab-on-skin" in both physically trained and un-trained groups under the same exercise intensity. We also validate the influence of different scenarios (water intake, breakfast, and exercise intensity) on dehydration time, sweat K+ level, sweat lactate level, and initial sweat rate.
Collapse
Affiliation(s)
- Jian Cai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mengzhu Cao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Chongbo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Mohammed Y Emran
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Ahmed Kotb
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Xiangjie Bo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
2
|
Mi Z, Xia Y, Dong H, Shen Y, Feng Z, Hong Y, Zhu H, Yin B, Ji Z, Xu Q, Hu X, Shu Y. Microfluidic Wearable Electrochemical Sensor Based on MOF-Derived Hexagonal Rod-Shaped Porous Carbon for Sweat Metabolite and Electrolyte Analysis. Anal Chem 2024; 96:16676-16685. [PMID: 39392225 DOI: 10.1021/acs.analchem.4c02950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Wearable sensors enable the noninvasive continuous analysis of biofluid, which is of great importance for healthcare monitoring. In this work, a wearable sensor was seamlessly integrated with a microfluidic chip which was prepared by a three-dimensional printing technology for noninvasive and multiplexed analysis of metabolite and electrolytes in human sweat. The microfluidic chip could enable rapid sampling of sweat, which avoids the sweat evaporation and contamination. Using a Zn metal-organic framework as a sacrificial template, the hexagonal rod-shaped porous carbon nanorod (PCN) with high porosity, a large specific surface area, and excellent conductivity was synthesized and exhibited the robust electrocatalytic ability of uric acid (UA) oxidation. Therefore, the PCN-based sensor showed high sensitivity and good selectivity of UA with a wide linear range of 10-200 μM and a low detection limit of 4.13 μM. Meanwhile, the potentiometry-based ion-selective electrode was constructed for detection of pH and K+, respectively, with good sensitivity, selectivity, reproducibility, and stability. In addition, the testing under different bending states demonstrated that mechanical deformation had little effect on the electrochemical performance of the wearable sensors. Furthermore, we evaluated the utility of the wearable sensor for multiplexed real-time analysis of UA, pH, and K+ in sweat during aerobic exercise, and the effect of the amount of consumed purine-rich foods on uric acid metabolite levels in sweat and urine was further investigated. The relationship between urine UA and sweat UA was obtained. Overall, this wearable sensor enables multiple electrolyte and metabolite analysis in different noninvasive biofluids, suggesting its potential application in personalized disease prevention.
Collapse
Affiliation(s)
- Ziyi Mi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Youyuan Xia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Huo Dong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yuhang Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ziyou Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yawen Hong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Haoyu Zhu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P. R. China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
3
|
Park W, Lee S, Oh MJ, Zhao Q, Kim J, Lee S, Haddadnezhad M, Jung I, Park S. Step-by-Step Nanoscale Top-Down Blocking and Etching Lead to Nanohexapods with Cartesian Geometry. ACS NANO 2024; 18:7402-7410. [PMID: 38411049 DOI: 10.1021/acsnano.3c09844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this research, we designed a stepwise synthetic method for Au@Pt hexapods where six elongated Au pods are arranged in a pairwise perpendicular fashion, sharing a common point (the central origin in a Cartesian-coordinate-like hexapod shape), featured with tip-selectively decorated Pt square nanoplates. Au@Pt hexapods were successfully synthesized by applying three distinctive chemical reactions in a stepwise manner. The Pt adatoms formed discontinuous thin nanoplates that selectively covered six concave facets of a Au truncated octahedron and served as etching masks in the succeeding etching process, which prevented underlying Au atoms from being oxidized. The subsequent isotropic etching proceeded radially, starting from the bare Au surface, carving the central nanocrystal in a concave manner. By controlling the etching conditions, Au@Pt hexapods were successfully fabricated, wherein the core Au domain is connected to six protruding arms, which hold Pt nanoplates at the ends. Due to their morphology, Au@Pt hexapods feature distinctive optical properties in the near-infrared region, as a proof of concept, allowing for surface-enhanced Raman spectroscopy (SERS)-based monitoring of in situ CO electrooxidation. We further extended our synthetic library by tailoring the size of the Pt nanoplates and neck widths of Au branches, demonstrating the validity of selective blocking and etching-based colloidal synthesis.
Collapse
Affiliation(s)
- Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | | | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Li F, Zhou Y, Wang D, Ding Z, Chen L, Feng X. Oxygen Vacancy Engineering of FeO x toward Oxygen-Tolerant Hydrogen Peroxide Reduction for Reliable Bioassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3241-3247. [PMID: 38289291 DOI: 10.1021/acs.langmuir.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The accurate determination of hydrogen peroxide (H2O2), an important clinical disease relevant biomarker, is of great importance for the diagnosis and management of illnesses. By using the cathodic monitoring approach, H2O2 can be accurately detected because interfering signals from easily oxidizable endogenous and exogenous species in biofluids can be avoided. However, the simultaneous occurrence of the oxygen reduction reaction (ORR) restricts the practical use of this cathodic method. In this study, via oxygen vacancy modulation, we synthesized FeOx catalysts that can selectively reduce H2O2 over O2. The H2O2 detection system based on this catalyst exhibits an outstanding ORR inhibition ability. Furthermore, by integrating this catalyst with glucose oxidase, a model enzyme, a reliable bioassay system was developed that can selectively detect glucose over a wide variety of interferents in artificially simulated tissue fluids. The bioassay system employing this catalyst in conjunction with oxidases is generally applicable to accurate detect a wide range of biomarkers.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|