1
|
Mohan B, Asif MB, Gupta RK, Pombeiro AJL, Yavuz CT, Ren P. Engineered covalent organic frameworks (COFs) for adsorption-based metal separation technologies: A critical review. Adv Colloid Interface Sci 2025; 342:103507. [PMID: 40233597 DOI: 10.1016/j.cis.2025.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/25/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Porous covalent organic frameworks (COFs) are promising materials used for separation and purification during environmental remediation. This critical review focuses on two key aspects. First, it critically examines strategies to improve COF design and structure and evaluates their impact on separation performance. Second, engineering approaches for enhancing the interactions between COF-based adsorbents and metals for enhanced separation and capture are elucidated. The latest body of research on separating metals (e.g., Li, K, Sr, Hg, Cd, Pb, Cr, Au, Ag, Pd, and U) using COF-based adsorbents is discussed to understand the factors that influence their performance. However, it is to be noted that COF-based adsorbents are still in their infancy and remain largley unexplored, mainly hindered by synthetic complexities and suboptimal crystalline structures. This highlights the need for further research and development to fully unlock the excellent potential of COFs for metal separation applications, particularly in environmental and energy applications.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001 Lisboa, Portugal
| | - Muhammad Bilal Asif
- Oxide & Organic Nanomaterials for Energy & Environment (ONE) Laboratory, Chemistry Program, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Rakesh Kumar Gupta
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. RoviscoPais, 1049-001 Lisboa, Portugal
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment (ONE) Laboratory, Chemistry Program, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Peng Ren
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Gao W, Bai Y, Wang X, Fu H, Zhao P, Zhu P, Yu J. Self-standing perylene diimide covalent organic framework membranes for trace TMA sensing at room temperature. J Colloid Interface Sci 2024; 663:262-269. [PMID: 38401446 DOI: 10.1016/j.jcis.2024.02.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The unprecedented demand for highly selective, real-time monitoring and low-power gas sensors used in food quality control has been driven by the increasing popularity of the Internet of Things (IoT). Herein, the self-standing perylene diimide based covalent organic framework membranes (COFMPDI-THSTZ) were prepared via liquid-liquid interfacial synthesis method. By incorporating the perylene diimide monomer into the COFM through molecular engineering, COFMPDI-THSTZ based sensor demonstrated an outstanding trimethylamine (TMA)-sensing performance at room temperature. Benefited from the TMA-accessible self-standing membrane morphology, π-electron delocalization effect, and extensive surface area with continuous nanochannels, the specific and highly sensitive TMA measurement has been achieved within the range of 0.03-400 ppm, with an exceptional theoretical detection limit as low as 10 ppb. Moreover, the primary internal mechanism of COFMPDI-THSTZ for this efficient TMA detection was investigated through in-situ FT-IR spectra, thereby directly elucidating that the chemisorption interaction of oxygen modulated the depletion layers on sensing material surface, resulting in alterations in sensor resistance upon exposure to the target gas. For practical usage, COFMPDI-THSTZ based sensor exhibited exceptional real-time in-situ sensing capabilities, further confirmed their potential for application in dynamic prediction evaluation of marine fish products and quality monitoring in IoT.
Collapse
Affiliation(s)
- Wenqing Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yujiao Bai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xinlei Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongyu Fu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
3
|
Pronin IA, Sigaev AP, Komolov AS, Zhizhin EV, Karmanov AA, Yakushova ND, Kyashkin VM, Nishchev KN, Sysoev VV, Goel S, Amreen K, K R, Korotcenkov G. Effects of Plasma Treatment on the Surface and Photocatalytic Properties of Nanostructured SnO 2-SiO 2 Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5030. [PMID: 37512303 PMCID: PMC10383562 DOI: 10.3390/ma16145030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
In this work, we study the effects of treating nanostructured SnO2-SiO2 films derived by a sol-gel method with nitrogen and oxygen plasma. The structural and chemical properties of the films are closely investigated. To quantify surface site activity in the films following treatment, we employed a photocatalytic UV degradation test with brilliant green. Using X-ray photoelectron spectroscopy, it was found that treatment with oxygen plasma led to a high deviation in the stoichiometry of the SnO2 surface and even the appearance of a tin monoxide phase. These samples also exhibited a maximum photocatalytic activity. In contrast, treatment with nitrogen plasma did not lead to any noticeable changes in the material. However, increasing the power of the plasma source from 250 W to 500 W led to the appearance of an SnO fraction on the surface and a reduction in the photocatalytic activity. In general, all the types of plasma treatment tested led to amorphization in the SnO2-SiO2 samples.
Collapse
Affiliation(s)
- Igor A Pronin
- Department of Nano- and Microelectronics, Penza State University, 440026 Penza, Russia
| | - Alexander P Sigaev
- Department of Nano- and Microelectronics, Penza State University, 440026 Penza, Russia
| | - Alexei S Komolov
- Resource Center "Physical Methods of Surface Investigation", St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Evgeny V Zhizhin
- Resource Center "Physical Methods of Surface Investigation", St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Andrey A Karmanov
- Department of Nano- and Microelectronics, Penza State University, 440026 Penza, Russia
| | - Nadezhda D Yakushova
- Department of Nano- and Microelectronics, Penza State University, 440026 Penza, Russia
| | - Vladimir M Kyashkin
- Institute of Physics and Chemistry, Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Konstantin N Nishchev
- Institute of Physics and Chemistry, Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Victor V Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics Lab, Birla Institute of Technology and Science, Hyderabad 500078, India
| | - Khairunnisa Amreen
- MEMS, Microfluidics and Nanoelectronics Lab, Birla Institute of Technology and Science, Hyderabad 500078, India
| | - Ramya K
- MEMS, Microfluidics and Nanoelectronics Lab, Birla Institute of Technology and Science, Hyderabad 500078, India
| | - Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, 2009 Chisinau, Moldova
| |
Collapse
|