1
|
Zhao J, Xiao Y, Yang M, Luo X, Shang Z, Chu W, Liang H, Yi X, Lin M, Xia F. Agarose Gel-Coated Nanochannel Biosensor for Detection of Prostate-Specific Antigen in Unprocessed Whole Blood Samples. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409966. [PMID: 39995386 DOI: 10.1002/smll.202409966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Solid-state nanopore/nanochannel biosensors have rapidly advanced due to their high sensitivity, label-free detection, and fast response. However, detecting biomarkers directly in complex biological environments, particularly whole blood, remains challenging because of nonspecific protein adsorption and nanopore/nanochannel clogging. Here, a DNA aptamer functionalized nanochannel biosensor is developed with excellent antifouling properties, achieved by coating the nanochannel surface with agarose gel. This gel coating effectively mitigates fouling in diverse biological environments while maintaining comparable sensitivity to uncoated nanochannels for detecting prostate-specific antigen (PSA) in buffer solutions within 20 min. The biosensor exhibits a detection limit of 1 ng mL-1 for PSA in human serum, matching the performance of commercial enzyme-linked immunosorbent assay (ELISA) kits. Importantly, it successfully differentiates whole blood samples from prostate cancer patients and healthy individuals. The superior antifouling behavior is attributed to the electrically neutral, highly hydrophilic nature, and porous structure of the agarose gel, which prevents the adsorption of large biomolecules while facilitating the diffusion of PSA for aptamer-based capture. This DNA aptamer functionalized nanochannel biosensor with agarose gel coating offers reliable protein detection in complex biological environments, showing great promise in biomedical applications.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yuling Xiao
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Mengyu Yang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xueqin Luo
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhiwei Shang
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Wenjing Chu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Since and Technology, Wuhan, 430022, P. R. China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ganzhou, 341000, P. R. China
| | - Meihua Lin
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Wei Y, Tang J, Zhang J, Lin Y, Zheng C. A label-free fluorescent-hydrogel sensor for heparin detection in diluted whole blood. Chem Commun (Camb) 2025; 61:1215-1218. [PMID: 39704102 DOI: 10.1039/d4cc03780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Heparin is a widely used blood anticoagulant and its monitoring in blood is essential during surgery. Unavoidable interference factors such as blood color and luminescence can interfere with the fluorescence visualization of heparin. Herein, we found a ratiometric fluorescence probe consisting of SYBR green and cresyl violet responsive to heparin mainly based on electrostatic interactions. A simple sensor was further embedded in an agarose hydrogel, exhibiting an obvious color change from orange to green without complex pretreatment of blood, which overcomes the susceptibility of fluorescence sensors toward biological samples.
Collapse
Affiliation(s)
- Yingnan Wei
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Jie Tang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
3
|
Kissell LN, Liu H, Sheokand M, Vang D, Kachroo P, Strobbia P. Direct Detection of Tobacco Mosaic Virus in Infected Plants with SERS-Sensing Hydrogels. ACS Sens 2024; 9:514-523. [PMID: 38195409 DOI: 10.1021/acssensors.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The impact of plant pathogens on global crop yields is a major societal concern. The current agricultural diagnostic paradigm involves either visual inspection (inaccurate) or laboratory molecular tests (burdensome). While field-ready diagnostic methods have advanced in recent years, issues remain with detection of presymptomatic infections, multiplexed analysis, and requirement for in-field sample processing. To overcome these issues, we developed surface-enhanced Raman scattering (SERS)-sensing hydrogels that detect pathogens through simple contact with a leaf. In this work, we developed a novel reagentless SERS sensor for the detection of tobacco mosaic virus (TMV) and embedded it in an optimized hydrogel material to produce sensing hydrogels. To test the diagnostic application of our sensing hydrogels, we demonstrate their use to detect TMV infection in tobacco plants. This technology has the potential to shift the current agricultural diagnostic paradigm by offering a field-deployable tool for presymptomatic and multiplexed molecular identification of pathogens.
Collapse
Affiliation(s)
- Lyndsay N Kissell
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Manisha Sheokand
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Der Vang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Pietro Strobbia
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
4
|
Wang L, Zhang Y, Wang L, Cheng Y, Yuan D, Zhai J, Xie X. Near-Infrared Fluoride Sensing Nano-Optodes and Distance-Based Hydrogels Containing Aluminum-Phthalocyanine. ACS Sens 2023; 8:4384-4390. [PMID: 37963263 DOI: 10.1021/acssensors.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Fluoride ions are highly relevant in environmental and biological sciences, and there is a very limited number of established fluoride chemical sensors. Previous fluoride-selective optodes were demonstrated with metal-porphyrin as the ionophore and required a chromoionophore for optical signal transduction. We demonstrate here novel optical fluoride sensing with nano-optodes containing an aluminum-phthalocyanine complex (AlClPc) as the single active sensing component, simplifying the conventional ion-selective optodes approach. The fluoride nano-optodes were interrogated in the absorbance and fluorescence modes in the near-infrared region, with absorption around 725 nm and emission peaks at 720 and 800 nm, respectively. The nano-optodes exhibited a lower detection limit around 0.1 μM and good selectivity over a range of common anions including ClO4-, Cl-, Br-, I-, SO42-, NO3-, and AcO-. Furthermore, the nano-optodes were physically entrapped in agarose hydrogels to allow distance-based point-of-care testing (POCT) applications. The 3D networks of the agarose hydrogel were able to filter off large particulates in the samples without stopping fluoride ions to reach the nano-optodes. The fluoride concentrations in real samples including river water, mineral water, and groundwater were successfully determined with the distance-based sensing hydrogel, and the results agreed well with those from commercial fluoride electrodes. Therefore, the results in this work lay the groundwork for the optical detection of fluoride in environmental samples without very sophisticated sample manipulation.
Collapse
Affiliation(s)
- Lanfei Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ye Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Liyuan Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dajing Yuan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Folz J, Wasserman JH, Jo J, Wang X, Kopelman R. Photoacoustic Chemical Imaging Sodium Nano-Sensor Utilizing a Solvatochromic Dye Transducer for In Vivo Application. BIOSENSORS 2023; 13:923. [PMID: 37887116 PMCID: PMC10605089 DOI: 10.3390/bios13100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Sodium has many vital and diverse roles in the human body, including maintaining the cellular pH, generating action potential, and regulating osmotic pressure. In cancer, sodium dysregulation has been correlated with tumor growth, metastasis, and immune cell inhibition. However, most in vivo sodium measurements are performed via Na23 NMR, which is handicapped by slow acquisition times, a low spatial resolution (in mm), and low signal-to-noise ratios. We present here a plasticizer-free, ionophore-based sodium-sensing nanoparticle that utilizes a solvatochromic dye transducer to circumvent the pH cross-sensitivity of most previously reported sodium nano-sensors. We demonstrate that this nano-sensor is non-toxic, boasts a 200 μM detection limit, and is over 1000 times more selective for sodium than potassium. Further, the in vitro photoacoustic calibration curve presented demonstrates the potential of this nano-sensor for performing the in vivo chemical imaging of sodium over the entire physiologically relevant concentration range.
Collapse
Affiliation(s)
- Jeff Folz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Janggun Jo
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.J.); (X.W.)
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|