1
|
Sanz CG, Aldea A, Barsan MM. Electrochemical detection of superoxide anion in living systems: Recent trends and clinical implications. Bioelectrochemistry 2025; 165:108998. [PMID: 40334552 DOI: 10.1016/j.bioelechem.2025.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Superoxide plays a significant role in maintaining physiological states of living systems, with major roles in eradicating invading microorganisms and in cell signaling. It is regulated intricately by the enzyme superoxide dismutase (SOD), and when not properly regulated it can lead to cascade biological pathways with severe and irreversible damage to biofilms, tissue, and organs, being linked with many neurodegenerative diseases, atherosclerotic and cardiovascular diseases. Therefore, superoxide anion (O2•-) detection has a tremendous potential in clinical diagnostics to assess oxidative stress in living cells. This comprehensive review aims to explore, discuss, and analyze recent trends in the electrochemical detection of O2•- in living systems, focusing not only on the recognition mechanism for in vitro assays (living cell cultures/tissues) but also on the importance of the electrode design and operational parameters for in vivo measurements (implantable sensors). By analyzing current in vitro/in vivo electrochemical strategies we gather information that is helpful to overcome existing limitations in the dynamic monitoring of O2•-, and further improve electrochemical strategies that can be adopted and applied to prevent its negative effect, with an insight into the pathophysiology of neurodegenerative disorders and even cellular malignancies that derive from its accumulation in living systems.
Collapse
Affiliation(s)
- Caroline G Sanz
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Magurele, Ilfov, Romania
| | - Anca Aldea
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Magurele, Ilfov, Romania
| | - Madalina M Barsan
- National Institute of Materials Physics, Str. Atomistilor 405A, 077125, Magurele, Ilfov, Romania.
| |
Collapse
|
2
|
Shen ZY, Sadiq S, Xu T, Wu P, Khan I, Jiao X, Khan A, Wang L, Lin S. Inhibitory effect of organometallic framework composite nanomaterial ZIF8@ZIF67 on different pathogenic microorganisms of silkworms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106307. [PMID: 40015899 DOI: 10.1016/j.pestbp.2025.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
The domestic silkworm (Bombyx mori) is of considerable economic importance, but is highly susceptible to various pathogens, which leads to substantial losses in sericulture. Nanomaterials, particularly metal-organic frameworks (MOFs), have shown promise in antibacterial applications due to their broad-spectrum activity and low toxicity. This study presented the synthesis, characterization, and antibacterial evaluation of MOF-based nanomaterials, specifically ZIF8, ZIF67, and their composite ZIF8@ZIF67, for their potential as antibacterial agents against silkworm pathogens. Our findings revealed that the composite material ZIF8@ZIF67 demonstrates better antibacterial efficacy against Bacillus cereus and Serratia marcescens in vitro than pristine ZIF8 and ZIF67, with minimal inhibitory concentrations of 2.5 μg/mL and 3.0 μg/mL, respectively. Furthermore, cytotoxicity assays indicate that neither ZIF8 at 100 μg/mL nor ZIF67 and ZIF8@ZIF67 at 200 μg/mL adversely affected the viability of BmN cells. At the same time, under these concentrations, the proliferation of Nosema bombycis at both 48 h and 72 h post-infection was significantly inhibited. Moreover, supplementation of 300 μg/g ZIF8@ZIF67 to silkworm larvae significantly enhanced their survival rates upon infection with the bacteria above without adversely affecting silkworm growth or cocoon weight. The underlying mechanisms of action may include disruption of bacterial cell membranes, induction of oxidative stress via generation of reactive oxygen species (ROS), and initiation of apoptosis. The biocompatibility and non-toxicity of ZIF8@ZIF67 and its antibacterial efficacy suggest its potential as a safe and effective agent for silkworm disease control. Conclusively, our research offers important insights for advancing MOFs-based nanomaterials for potential antibacterial treatment in silkworms or other insects.
Collapse
Affiliation(s)
- Zhen-Yu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Samreen Sadiq
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tao Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 21200, China.
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Xinhao Jiao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aftab Khan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lulai Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Su Lin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
3
|
Du J, Sun J, Ding Q, Shi F, Chen C, Li C, Dong B, Wang L, Kim JS, Xu L. Dual oxidative stress biomarkers co-recognition in periodontal microenvironment: A flexible and low-power consumption nanozyme sensing platform. Biosens Bioelectron 2024; 265:116688. [PMID: 39213818 DOI: 10.1016/j.bios.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Sensing platforms with high interference immunity and low power consumption are crucial for the co-detection of dual oxidative stress biomarkers and clinical diagnosis of periodontitis. Herein, we constructed a bifunctional nanozyme to identify hydrogen peroxide (H2O2) and ascorbic acid (AA) with low crosstalk at zero or low bias voltage. To target H2O2 and AA, Fe(III) meso-tetra(4-carboxyphenyl) porphine (TCPP(Fe)) and Pt nanoclusters were selected as active sites respectively, and titanium carbide nanosheets were additionally introduced as a sensitizer. Due to their highly efficient catalytic properties, self-powered detection of H2O2 without bias voltage and distinguishable AA detection at 0.45 V were successfully achieved. Density functional theory calculations further confirmed the binding sites for target molecules and elucidated the sensing mechanism. On this basis, a dual-channel screen-printed electrode was fabricated to further ensure the discriminative detection of dual biomarkers at the device level. The constructed flexible, low-power consumption sensing platform was successfully applied to raw clinical samples, effectively distinguishing between healthy individuals and patients with varying degrees of periodontitis. This work is expected to provide new insights into the design of highly specific nanozymes and low-power consumption electrochemical sensing systems, which will contribute to the accurate and convenient diagnosis of periodontitis.
Collapse
Affiliation(s)
- Juanrui Du
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Jiao Sun
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Fangyu Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Cong Chen
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Zhang X, Zhou Y, Wang H, Huang X, Shi Y, Zou Y, Hu X, Li Z, Shi J, Zou X. Energy difference-driven ROS reduction for electrochemical tracking crop growth sensitized with electron-migration nanostructures. Anal Chim Acta 2024; 1304:342515. [PMID: 38637032 DOI: 10.1016/j.aca.2024.342515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Aiming for sustainable crop productivity under changing climate conditions, it is essential to develop handy models for in-situ monitoring of reactive oxygen species (ROS). Herein, this work reports a simple electrochemical sensing toward hydrogen peroxide (H2O2) for tracking crop growth status sensitized with electron-migration nanostructure. To be specific, Cu-based metal-organic frameworks (MOFs) with high HOMO energy level are designed for H2O2 reduction on account of Cu(I)/Cu(II) redox switchability. Importantly, the sensing performance is improved by electrochemically reduced graphene oxide (GO) with ready to use feature. To overcome the shortcomings of traditional liquid electrolytes, conductive hydrogel as semi-solid electrolyte exhibits the adhesive property to the cut plant petiole surface. Benefitting from the preferred composite models and conductive hydrogel, the electrochemical sensing toward H2O2 with high sensitivity and good anti-interference against the coexistent molecules, well qualified for acquiring plant growth status.
Collapse
Affiliation(s)
- Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Yue Zhou
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Heng Wang
- Lianyungang Customs Integrated Technology Center, Lianyungang, 222042, PR China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Xuetao Hu
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, 212013, PR China.
| |
Collapse
|
5
|
Yu S, Li H, Duan Y, Xia S, Liu H, Huang H, Zhu H, Wang L, He H, Wang S. hROS-Responsive Behavior for Long-Term Stability of Cellulosic Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307770. [PMID: 37963831 DOI: 10.1002/smll.202307770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/08/2023] [Indexed: 11/16/2023]
Abstract
Understanding the gold core-ligand interaction in gold nanoclusters (GNCs) is essential for the on-demand tailoring of their photoluminescence properties and long-term stability. Here, inspired by the suckers arranged directionally on the tentacles of octopus, a series of GNCs with regulating ligand structures are grown and stabilized on the cellulose nanocrystals (CNCs). The carboxylated CNCs providing an electron-rich environment to promote the luminescence of GNCs and stabilize it within a long-term of 1 year through anchoring and diluting effects, and the highest quantum yields reaches 31.02% in ultrapure water. Interestingly, this bionic preparation strategy is generally applicable to various ligands for tailoring on-demand hROS-responsive and nonresponsive GNCs to construct tunable-emission wavelength dual GNCs ratiometric probes. The results show that designing a specific ligand structure to inhibit the transformation of Au-Au to Au (I)-ligand in GNCs is crucial to regulate the hROS-responsive characteristics. As expected, the interfacial compatible dual GNCs ratiometric probe with a hROS limit of detection of 0.74 µmol L-1 can diagnose certain diseases through intracellular hROS imaging. This work provides important insights for understanding the gold core-ligand interaction in GNCs during the oxidation process triggered by intracellular hROS.
Collapse
Affiliation(s)
- Shanshan Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Haoyuan Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Yujie Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Siyuan Xia
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Hui Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Huanhuan Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| |
Collapse
|
6
|
Shi Z, Li Y, Wu X, Chen B, Sun W, Guo C, Li CM. Integrated Sandwich-Paper 3D Cell Sensing Device to In Situ Wirelessly Monitor H 2O 2 Released from Living Cells. Anal Chem 2024. [PMID: 38324759 DOI: 10.1021/acs.analchem.3c05639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Point-of-care testing (POCT) has attracted great interest because of its prominent advantages of rapidness, precision, portability, and real-time monitoring, thus becoming a powerful biomedical device in early clinical diagnosis and convenient medical treatments. However, its complicated manufacturing process and high expense severely impede mass production and broad applications. Herein, an innovative but inexpensive integrated sandwich-paper three-dimensional (3D) cell sensing device is fabricated to in situ wirelessly detect H2O2 released from living cells. The paper-based electrochemical sensing device was constructed by a sealed sandwiched bottom plastic film/fiber paper/top hole-centered plastic film that was printed with patterned electrodes. A new (Fe, Mn)3(PO4)2/N-doped carbon nanorod was developed and immobilized on the sensing carbon electrode while cell culture solution filled the exposed fiber paper, allowing living cells to grow on the fiber paper surrounding the electrode. Due to the significantly shortening diffusion distance to access the sensing sites by such a unique device and a rationally tuned ratio of Fe2+/Mn2+, the device exhibits a fast response time (0.2 s), a low detection limit (0.4 μM), and a wide detection range (2-3200 μM). This work offers great promise for a low-cost and highly sensitive POCT device for practical clinic diagnosis and broad POCT biomedical applications.
Collapse
Affiliation(s)
- Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yunpeng Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| |
Collapse
|
7
|
Madhuvilakku R, Hong Y, Nila IS, Villagra Moran VM, Subramanian P, Khan ZA, Jeong S, You SG. Quantification of Neuronal Cell-Released Hydrogen Peroxide Using 3D Mesoporous Copper-Enriched Prussian Blue Microcubes Nanozymes: A Colorimetric Approach in Real Time and Anticancer Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55466-55485. [PMID: 37991753 DOI: 10.1021/acsami.3c13594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Despite the effectiveness and selectivity of natural enzymes, their instability has paved the way for developing nanozymes with high peroxidase activity using a straightforward technique, thereby expanding their potential for multifunctional applications. Herein, meso-copper-Prussian blue microcubes (Meso-Cu-PBMCs) nanozymes were successfully prepared via a cost-effective hydrothermal route. It was found that the Cu-PBMCs nanozymes, with three-dimensional (3D) mesoporous cubic morphologies, exhibited an excellent peroxidase-like property. Based on the high affinity of Meso-Cu-PBMCs toward H2O2 (Km = 0.226 μM) and TMB (Km = 0.407 mM), a colorimetric sensor for in situ H2O2 detection was constructed. On account of the high catalytic activity, affinity, and cascade strategy, the Meso-Cu-PBMCs nanozyme generated rapid multicolor displays at varying H2O2 concentrations. Under optimized conditions, the proposed sensor exhibits a preferable sensitivity of 18.14 μA μM-1, a linear range of 10 nM-25 mM, and a detection limit of 6.36 nM (S/N = 10). The reliability of the sensor was verified by detecting H2O2 in spiked human blood serum and milk samples, as well as by detecting in situ H2O2 generated from the neuron cell SH-SY5Y. Besides, the Meso-Cu-PBMCs nanozyme facilitated the catalysis of H2O2 in cancer cells, generating •OH radicals that induce the death of cancer cells (HCT-116 colon cancer cells), which holds substantial potential for application in chemodynamic therapy (CDT). This proposed strategy holds promise for simple, rapid, inexpensive, and effective intracellular biosensing and offers a novel approach to improve CDT efficacy.
Collapse
Affiliation(s)
- Rajesh Madhuvilakku
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Digital Anti-Aging Healthcare, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Irin Sultana Nila
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Digital Anti-Aging Healthcare, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Vanina Myuriel Villagra Moran
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Department of Physical Therapy, Graduate School of Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Palanisamy Subramanian
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
- Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Sehoon Jeong
- Department of Medical Information Technology, College of Bio Nano Information Technology, Inje University, Gimhae, Gyeong-nam 50834, Republic of Korea
| | - Sang Guan You
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| |
Collapse
|
8
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|