1
|
Ghasemi S, Shamsabadi M, Olesund A, Najera F, Erbs Hillers-Bendtsen A, Edhborg F, Aslam AS, Larsson W, Wang Z, Amombo Noa FM, Salthouse RJ, Öhrström L, Hölzel H, Perez-Inestrosa E, Mikkelsen KV, Hanrieder J, Albinsson B, Dreos A, Moth-Poulsen K. Pyrene Functionalized Norbornadiene-Quadricyclane Fluorescent Photoswitches: Characterization of their Spectral Properties and Application in Imaging of Amyloid Beta Plaques. Chemistry 2024; 30:e202400322. [PMID: 38629212 DOI: 10.1002/chem.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024]
Abstract
This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aβ) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aβ plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Monika Shamsabadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Francisco Najera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Adil S Aslam
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Wera Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, U.K
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Rebecca Jane Salthouse
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - E Perez-Inestrosa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, Denmark
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Ambra Dreos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research & Advanced Studies, ICREA, Pg. Llu'ıs Companys 23, 08010, Barcelona, Spain
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| |
Collapse
|
2
|
Chen H, Tang Z, Yang Y, Hao Y, Chen W. Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes. Molecules 2024; 29:2521. [PMID: 38893396 PMCID: PMC11173890 DOI: 10.3390/molecules29112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant advancements have been made in the research of photoswitchable probes. These probes undergo reversible structural and electronic changes upon light exposure, thus exhibiting vast potential in molecular detection, biological imaging, material science, and information storage. Through precisely engineered molecular structures, the photoswitchable probes can toggle between "on" and "off" states at specific wavelengths, enabling highly sensitive and selective detection of targeted analytes. This review systematically presents photoswitchable fluorescent and colorimetric probes built on various molecular photoswitches, primarily focusing on the types involving photoswitching in their detection and/or signal response processes. It begins with an analysis of various molecular photoswitches, including their photophysical properties, photoisomerization and photochromic mechanisms, and fundamental design concepts for constructing photoswitchable probes. The article then elaborates on the applications of these probes in detecting diverse targets, including cations, anions, small molecules, and biomacromolecules. Finally, it offers perspectives on the current state and future development of photoswitchable probes. This review aims to provide a clear introduction for researchers in the field and guidance for the design and application of new, efficient fluorescent and colorimetric probes.
Collapse
Affiliation(s)
- Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
3
|
Upadhyay M, Deka R, Ray D. Carbazole-Benzonitrile-Norbornadiene Conjugates for Photothermally Reversible Ambient Phosphorescence. J Phys Chem Lett 2024; 15:3191-3196. [PMID: 38483186 DOI: 10.1021/acs.jpclett.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Organic photoswitches have attracted significant attention across various fields, such as sensing, bioimaging, photopharmacology, molecular machines, and solar energy storage. However, as a result of design complexities, achieving photothermally reversible ambient phosphorescence switching in the condensed state remains elusive. Herein, we explore the impact of norbornadiene (NBD)/quadricyclane (QC) substitution at position 5 of the benzonitrile acceptor covalently attached to the carbazole donor on photothermally reversible luminescence switching. Experimental investigations demonstrated that the CzN and TBCzN switches exhibited photothermally reversible fluorescence switching in solution. Moreover, in the condensed state, fluorescence and ambient phosphorescence switching were observed as a result of a low singlet-triplet (ΔEST) gap (CzN ⇆ CzQ, ΔESTCzN/CzQ = 0.05/0.28 eV; TBCzN ⇆ TBCzQ, ΔESTTBCzN/TBCzQ = 0.06/0.09 eV). Reversible ambient phosphorescence switching is primarily influenced by modulation of acceptor conjugation resulting from NBD ⇆ QC switching. This approach may provide important clues for the design of visible-light-absorbing photothermally reversible phosphorescent materials.
Collapse
Affiliation(s)
- Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Raktim Deka
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|