1
|
Gong P, Wang Y, Zhao J, Yang GY. Antimonotungstate-Based Heterometallic Framework Formed by the Synergistic Strategy of In Situ-Generated Krebs-Type Building Units and the Substitution Reaction and Its High-Efficiency Biosensing KRAS Gene. Inorg Chem 2025; 64:315-326. [PMID: 39801389 DOI: 10.1021/acs.inorgchem.4c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
A novel antimonotungstate (AT)-based heterometallic framework {[Er(H2O)6]2[Fe4(H2pdc)4(B-β-SbW9O33)2]}·50H2O (1, H2pdc = pyridine-2,5-dicarboxylic acid) was obtained through a synergistic strategy of in situ-generated transition-metal-encapsulated polyoxometalate (POM) building units and the substitution reaction. Its structural unit is composed of a tetra-FeIII-substituted Krebs-type [Fe4(H2pdc)4(B-β-SbW9O33)2]6- subunit and two [Er(H2O)6]3+ cations. This subunit can be regarded as a product of carboxylic oxygen atoms of H2pdc ligands replacing active water ligands in the [Fe4(H2O)10(B-β-SbW9O33)2]6- species. Apparently, the substitution action of carboxylic oxygen atoms of H2pdc ligands for active water ligands, together with the coordination function of Er3+ ions, plays a connection role in the architecture of the three-dimensional (3-D) heterometallic framework. Based on the stability and high redox activity of 1, a glassy carbon electrode modified by 1 is used for the construction of an electrochemical biosensor (ECBS). Thus, such 1-based ECBS can sensitively detect the KRAS gene (a key genetic marker for identifying the occurrence of malignant tumors) and displays a low detection limit (0.106 pM), high selectivity, and reproducibility. This work not only provides a feasible approach to prepare novel multicomponent POM-based heterometallic frameworks but also establishes a new platform for biosensing the KRAS gene and extends the application scope of POM-based functional materials.
Collapse
Affiliation(s)
- Peijun Gong
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yanying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
2
|
Kim S, Im J, Wang SX, Lee JR. Design and Validation of Specific Oligonucleotide Probes on Planar Magnetic Biosensors. Anal Chem 2024; 96:19447-19455. [PMID: 39576756 DOI: 10.1021/acs.analchem.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Planar DNA biosensors employ surface-tethered oligonucleotide probes to capture target molecules for diagnostic applications. To improve the sensitivity and specificity of biosensing, hybridization affinities should be enhanced, and cross-hybridization with off-targets must be minimized. To this end, assays can be designed using the thermodynamic properties of hybridization between probes and on-targets or off-targets based on Gibbs free energies and melting temperatures. However, the nature of heterogeneous hybridization between the probes on the surface and the targets in a solution imposes challenges in predicting precise hybridization affinities and the degree of cross-hybridization due to indeterminable thermodynamic penalties induced by the solid surface and its status. Herein, we suggest practical and convenient guidelines for designing oligonucleotide probes based on data obtained from planar magnetic biosensors and thermodynamic properties calculated by using easily accessible solution-phase prediction. The suggested requirements comprised Gibbs free energy ≥ -7.5 kcal mol-1 and melting temperature ≤10 °C below the hybridization temperature, and we validated for the absence of cross-hybridization. Additionally, the effects of secondary structures such as hairpins and homodimers were investigated for better oligonucleotide probe designs. We believe that these practical guidelines will assist researchers in developing planar magnetic biosensors with high sensitivity and specificity for the detection of new targets.
Collapse
Affiliation(s)
- Songeun Kim
- Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jisoo Im
- Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jung-Rok Lee
- Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Chu M, Zhang Y, Ji C, Zhang Y, Yuan Q, Tan J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS NANO 2024; 18:31713-31736. [PMID: 39509537 DOI: 10.1021/acsnano.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Sensitive and quantitative detection of chemical and biological molecules for screening, diagnosis and monitoring diseases is essential to treatment planning and response monitoring. Electrochemical biosensors are fast, sensitive, and easy to miniaturize, which has led to rapid development in clinical diagnosis. Benefiting from their excellent molecular recognition ability and high programmability, DNA nanomaterials could overcome the Debye length of electrochemical biosensors by simple molecular design and are well suited as recognition elements for electrochemical biosensors. Therefore, to enhance the sensitivity and specificity of electrochemical biosensors, significant progress has been made in recent years by optimizing the DNA nanomaterials design. Here, the establishment of electrochemical sensing strategies based on DNA nanomaterials is reviewed in detail. First, the structural design of DNA nanomaterial is examined to enhance the sensitivity of electrochemical biosensors by improving recognition and overcoming Debye length. In addition, the strategies of electrical signal transduction and signal amplification based on DNA nanomaterials are reviewed, and the applications of DNA nanomaterial-based electrochemical biosensors and integrated devices in clinical diagnosis are further summarized. Finally, the main opportunities and challenges of DNA nanomaterial-based electrochemical biosensors in detecting disease biomarkers are presented in an aim to guide the design of DNA nanomaterial-based electrochemical devices with high sensitivity and specificity.
Collapse
Affiliation(s)
- Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yawen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Li P, Zhang H, Yang Z, Li Y, Huang M, Yang L, Zhang X. Rapid fluorescent nucleic acid sensing with ultra-thin gold nanosheets. Anal Chim Acta 2024; 1317:342872. [PMID: 39030016 DOI: 10.1016/j.aca.2024.342872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
Fluorescently labeled DNA oligonucleotides and gold nanospheres have been frequently utilized in biosensors, providing efficient nucleic acid detection. Nevertheless, the restricted loading capacity of gold nanospheres undermines overall sensitivity. In this study, we employed four-atom-thick ultrathin gold nanosheets (AuNSs), utilizing a "pre-mix model" for rapid target nucleic acid detection. In this approach, fluorescently labeled DNA probes were pre-incubated with the target nucleic acid, followed by the addition of AuNSs for probe adsorption and fluorescence quenching. With the developed method, we efficiently and rapidly detected the SARS-CoV-2 N gene sequence within 30 min, involving a brief 15-min target pre-incubation and a subsequent 15-min adsorption of free probes and fluorescence quenching by AuNSs. This method exhibited heightened sensitivity compared to gold nanospheres, boasting a limit of detection (LOD) of 0.808 nM. Furthermore, exceptional recovery was achieved in simulated biological samples. The study introduces an effective strategy for nucleic acid sensing characterized by rapidity, heightened sensitivity, ease of operation, and robustness. These findings encourage further development of rapid biomarker sensing methods employing 2D nanomaterials.
Collapse
Affiliation(s)
- Peiyin Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Huiyang Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Zhenyu Yang
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518055, China
| | - Yiling Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Manli Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Lingzhi Yang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Xueji Zhang
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518055, China
| |
Collapse
|
5
|
Qureashi A, Haq ZU, Bashir A, Nazir I, Ganaie FA, Fatima K, Malik LA, Sheikh FA, Pandith AH. Bifunctional Zirconium Phosphate with Greigite for Electrochemical Detection and Simultaneous Removal of Heavy Metal Ions and Nitro Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14486-14503. [PMID: 38970496 DOI: 10.1021/acs.langmuir.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Electrochemical sensing is emerging as a method of choice for the sensing and monitoring of contaminants in water. Various sensing platforms have been designed for sensing heavy metal ions and organic pollutants in water bodies. Herein, we report a new electrochemical platform that can be used for the detection of both heavy metal ions and nitro-based organic contaminants in water bodies. The electrochemical sensor uses a modified electrode based on Fe3S4-impregnated zirconium phosphate (ZrP) nanoparticles synthesized by a simple ultrasonication method. The ZrP@Fe3S4 nanoparticles were thoroughly characterized by power X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and ζ-potential studies. The material exhibits an excellent electrochemical performance for the detection of Pb2+, Hg2+, nitrophenol, nitroaniline, and picric acid with low limits of detection of ca. 0.93, 0.70, 0.98, 1.10, and 1.53 ppm, respectively. Since ZrP@Fe3S4 nanoparticles are magnetically recyclable, their adsorption capacity and recyclability have been thoroughly investigated for the uptake of Pb2+ and Hg2+ ions from contaminated water. We observed that the adsorption of Pb2+ and Hg2+ ions on ZrP@Fe3S4 is best described by the Langmuir isotherm and pseudo-second-order kinetic models, with adsorption capacities of 219.44 and 118.4 mg/g, respectively. Similarly, the removal efficiency of ZrP@Fe3S4 was found to be 91, 57.6, and 31.3% for nitrophenol, nitroaniline, and picric acid, respectively. Furthermore, the theoretical calculations using density functional theory (DFT) were carried out to find the adsorption energy, affinity, and point of adsorption, which are in line with the experimental results. DFT calculations further suggest that the incorporation of Fe3S4 on ZrP improves the surface charge density and promotes efficient electron transfer between the electrode and the analyte. We have shown the real-time analysis of Dal lake water as a proof of concept, and the synthesized composite exhibits good recovery and promising results for metal ion sensing. ZrP@Fe3S4 demonstrated an excellent cycling stability and long-term stability without noticeable degradation for 1 week.
Collapse
Affiliation(s)
- Aaliya Qureashi
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Zia Ul Haq
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Arshid Bashir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Irfan Nazir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Firdous Ahmad Ganaie
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Kaniz Fatima
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Lateef Ahmad Malik
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Srinagar 190006, Kashmir, India
| | - Altaf Hussain Pandith
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| |
Collapse
|
6
|
Zhang C, Zhao X, Huang Z, Li Z, Hu J, Liu R, Lv Y. Highly sensitive detection of aflatoxin B1 byCRISPR/Cas12a-assisted single nanoparticle counting. Food Chem 2024; 443:138557. [PMID: 38280363 DOI: 10.1016/j.foodchem.2024.138557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) and CRISPR-associated protein (Cas) have gained extensive applications in bioassays. However, CRISPR-based detection platforms are often hampered by limited analytical sensitivity, while nucleic acid-based amplification strategies are usually indispensable for additional signal enhancement with potential risks of amplification leakages. To address these challenges, an amplification-free CRISPR-based bioassay of aflatoxin B1 (AFB1) was proposed by applying single nanoparticle counting. Single-particle mode inductively coupled plasma mass spectrometry (Sp-ICPMS) has been regarded as a sensitive tool for nanoparticle counting since one nanoparticle can generate considerable signals above backgrounds. With AFB1, activator strands were introduced to initiate the trans-cleavage of CRISPR/Cas12a for cutting the nanoparticles-tagged-magnetic beads, which were transduced to nanoparticle count signals after separation. Finally, a pico-mole level limit-of-detections (LODs) with moderate selectivity was achieved. Certified reference materials (CRMs) analysis and recovery tests were conducted with promising results. To our best knowledge, this is the first report of the single particle counting-based CRISPR/Cas12a biosensing study.
Collapse
Affiliation(s)
- Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610041, PR China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| |
Collapse
|
7
|
Park BC, Soh JO, Choi HJ, Park HS, Lee SM, Fu HE, Kim MS, Ko MJ, Koo TM, Lee JY, Kim YK, Lee JH. Ultrasensitive and Rapid Circulating Tumor DNA Liquid Biopsy Using Surface-Confined Gene Amplification on Dispersible Magnetic Nano-Electrodes. ACS NANO 2024; 18:12781-12794. [PMID: 38733343 DOI: 10.1021/acsnano.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Circulating tumor DNA (ctDNA) detection has been acknowledged as a promising liquid biopsy approach for cancer diagnosis, with various ctDNA assays used for early detection and treatment monitoring. Dispersible magnetic nanoparticle-based electrochemical detection methods have been proposed as promising candidates for ctDNA detection based on the detection performance and features of the platform material. This study proposes a nanoparticle surface-localized genetic amplification approach by integrating Fe3O4-Au core-shell nanoparticles into polymerase chain reactions (PCR). These highly dispersible and magnetically responsive superparamagnetic nanoparticles act as nano-electrodes that amplify and accumulate target ctDNA in situ on the nanoparticle surface upon PCR amplification. These nanoparticles are subsequently captured and subjected to repetitive electrochemical measurements to induce reconfiguration-mediated signal amplification for ultrasensitive (∼3 aM) and rapid (∼7 min) metastatic breast cancer ctDNA detection in vitro. The detection platform can also detect metastatic biomarkers from in vivo samples, highlighting the potential for clinical applications and further expansion to rapid and ultrasensitive multiplex detection of various cancers.
Collapse
Affiliation(s)
- Bum Chul Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, United States
| | - Jeong Ook Soh
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Joo Choi
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Biomedical Research Institute (HBRI), Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Su Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hong En Fu
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Myeong Soo Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Radiology, Northwestern University, Chicago, Illinois 60611, United States
| | - Thomas Myeongseok Koo
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Yeon Lee
- Department of Pathology, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
8
|
Ji D, Zhao J, Liu Y, Wei D. Electrical Nanobiosensors for Nucleic Acid Based Diagnostics. J Phys Chem Lett 2023; 14:4084-4095. [PMID: 37125726 DOI: 10.1021/acs.jpclett.3c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.
Collapse
Affiliation(s)
- Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 353] [Impact Index Per Article: 176.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|