1
|
Cao Y, Yang C, Liu C, Fan Z, Yang S, Song H, Hao R. Advanced electrochemical detection methodologies for assessing neuroactive substance variability induced by environmental pollutants exposure. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2025; 37:103965. [DOI: 10.1016/j.eti.2024.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Xu Q, Xi Y, Wang L, Xu M, Ruan T, Du Z, Jiang C, Cao J, Zhu X, Wang X, Yang B, Liu J. In situ self-referenced intracellular two-electrode system for enhanced accuracy in single-cell analysis. Biosens Bioelectron 2024; 253:116173. [PMID: 38432075 DOI: 10.1016/j.bios.2024.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Since the emergence of single-cell electroanalysis, the two-electrode system has become the predominant electrochemical system for real-time behavioral analysis of single-cell and multicellular populations. However, due to the transmembrane placement of the two electrodes, cellular activities can be interrupted by the transmembrane potentials, and the test results are susceptible to influences from factors such as intracellular solution, membrane, and bulk solution. These limitations impede the advancement of single-cell analysis. Here, we propose a highly miniaturized and integrated in situ self-referenced intracellular two-electrode system (IS-SRITES), wherein both the working and reference electrodes are positioned inside the cell. Additionally, we demonstrated the stability (0.28 mV/h) of the solid-contact in situ Ag/AgCl reference electrode and the ability of the system to conduct standard electrochemical testing in a wide pH range (pH 6.0-8.0). Cell experiments confirmed the non-destructive performance of the electrode system towards cells and its capacity for real-time monitoring of intra- and extracellular pH values. Moreover, through equivalent circuits, finite element simulations, and drug delivery experiments, we illustrated that the IS-SRITES can yield more accurate test results and exhibit enhanced resistance to interference from the extracellular environment. Our proposed system holds the potential to enable the precise detection of intracellular substances and optimize the existing model of the electrode system for intracellular signal detection, thereby spearheading advancements in single-cell analysis.
Collapse
Affiliation(s)
- Qingda Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ye Xi
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Longchun Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengfei Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Ruan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyuan Du
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunpeng Jiang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Cao
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiantao Zhu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolin Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Wang Y, Wang T, Huang K, Liu L, Yin J, Sun W, Yu F, Yao W, Li X, Liu X, Jiang H, Wang X. In situ monitoring of cytoplasmic dopamine levels by noble metals decorated carbon fiber tips. Biosens Bioelectron 2024; 250:116087. [PMID: 38295583 DOI: 10.1016/j.bios.2024.116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/28/2024] [Indexed: 02/02/2024]
Abstract
Dopamine (DA), a catecholamine neurotransmitter, is crucial in brain signal transmission. Monitoring cytoplasmic DA levels can reflect changes in metabolic factors and provide valuable information for researching the mechanisms involved in neurodegenerative diseases. However, the in-situ detection of intracellular DA is constrained by its low contents in small-sized single cells. In this work, we report that noble metal (Au, Pt)-modified carbon fiber micro-nanoelectrodes are capable of real-time detection of DA in single cells with excellent sensitivity, selectivity, and anti-contamination capabilities. Notably, noble metals can be modified on the electrode surface through electrochemical deposition to enhance the conductivity of the electrode and the oxidation current of DA by 50 %. The nanosensors can work stably and continuously in rat adrenal pheochromocytoma cells (PC12) to monitor changes in DA levels upon K+ stimulation. The functionalized carbon fibers based nanosensors will provide excellent prospects for DA analysis in the brains of living animals.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China; Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, PR China
| | - Tingya Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, PR China
| | - Ke Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Jiajia Yin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Fangfang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xintong Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
4
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|