1
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Liu Q, Chen Y, Qi H. Advances in Genotyping Detection of Fragmented Nucleic Acids. BIOSENSORS 2024; 14:465. [PMID: 39451678 PMCID: PMC11506436 DOI: 10.3390/bios14100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Single nucleotide variant (SNV) detection is pivotal in various fields, including disease diagnosis, viral screening, genetically modified organism (GMO) identification, and genotyping. However, detecting SNVs presents significant challenges due to the fragmentation of nucleic acids caused by cellular apoptosis, molecular shearing, and physical degradation processes such as heating. Fragmented nucleic acids often exhibit variable lengths and inconsistent breakpoints, complicating the accurate detection of SNVs. This article delves into the underlying causes of nucleic acid fragmentation and synthesizes the strengths and limitations of next-generation sequencing technology, high-resolution melting curves, molecular probes, and CRISPR-based approaches for SNV detection in fragmented nucleic acids. By providing a detailed comparative analysis, it seeks to offer valuable insights for researchers working to overcome the challenges of SNV detection in fragmented samples, ultimately advancing the accurate and efficient detection of single nucleotide variants across diverse applications.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (Y.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yun Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (Y.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (Y.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Pastrana C, Guerreiro JRL, Elumalai M, Carpena-Torres C, Crooke A, Carracedo G, Prado M, Huete-Toral F. Dual-Mode Gold Nanoparticle-Based Method for Early Detection of Acanthamoeba. Int J Mol Sci 2022; 23:ijms232314877. [PMID: 36499204 PMCID: PMC9740238 DOI: 10.3390/ijms232314877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Acanthamoeba keratitis is an aggressive and rapidly progressing ocular pathology whose main risk factor is the use of contact lenses. An early and differential diagnosis is considered the main factor to prevent the progression and improve the prognosis of the pathology. However, current diagnosis techniques require time, complex and costly materials making an early diagnosis challenging. Thus, there is a need for fast, accessible, and accurate methods for Acanthamoeba detection by practitioners for timely and suitable treatment and even for contact lens user as preventive diagnosis. Here, we developed a dual-mode colorimetric-based method for fast, visual, and accurate detection of Acanthamoeba using gold nanoparticles (AuNPs). For this strategy, AuNPs were functionalized with thiolated probes and the presence of target Acanthamoeba genomic sequences, produce a colorimetric change from red to purple. This approach allows the detection of 0.02 and 0.009 μM of the unamplified Acanthamoeba genome by the naked eye in less than 20 min and by color analysis using a smartphone. Additionally, real samples were successfully analyzed showing the potential of the technology considering the lack of point-of-care tools that are mostly needed.
Collapse
Affiliation(s)
- Cristina Pastrana
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
- Correspondence: (C.P.); (J.R.L.G.)
| | - J. Rafaela L. Guerreiro
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
- BioMark@ISEP, School of Engineering of the Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
- CEB/LABBELS, Center of Biological Engineering, Minho University, Campus de Gualtar, Rua da Universidade, 4710-057 Braga, Portugal
- Correspondence: (C.P.); (J.R.L.G.)
| | - Monisha Elumalai
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Carlos Carpena-Torres
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | - Marta Prado
- Food Quality and Safety Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| |
Collapse
|
4
|
Prakash HS, Maroju PA, Boppudi NSS, Balapure A, Ganesan R, Ray Dutta J. Influence of citrate buffer and flash heating in enhancing the sensitivity of ratiometric genosensing of Hepatitis C virus using plasmonic gold nanoparticles. MICRO AND NANO SYSTEMS LETTERS 2021. [DOI: 10.1186/s40486-021-00134-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractGold nanoparticles (Au NPs) based technology has been shown to possess enormous potential in the viral nucleic acid diagnosis. Despite significant advancement in this domain, the existing literature reveals the diversity in the conditions employed for hybridization and tagging of thiolated nucleic acid probes over the Au NPs. Here we employ the probe sequence derived from the Hepatitis C virus to identify the optimal hybridization and thiol-Au NP tagging conditions. In a typical polymerase chain reaction, the probes are initially subjected to flash heating at elevated temperatures to obtain efficient annealing. Motivated by this, in the current study, the hybridization between the target and the antisense oligonucleotide (ASO) has been studied at 65 °C with and without employing flash heating at temperatures from 75 to 95 °C. Besides, the efficiency of the thiolated ASO’s tagging over the Au NPs with and without citrate buffer has been explored. The study has revealed the beneficial role of flash heating at 95 °C for efficient hybridization and the presence of citrate buffer for rapid and effective thiol tagging over the Au NPs. The combinatorial effect of these conditions has been found to be advantageous in enhancing the sensitivity of ratiometric genosensing using Au NPs.
Collapse
|
5
|
Elumalai M, Ipatov A, Carvalho J, Guerreiro J, Prado M. Dual colorimetric strategy for specific DNA detection by nicking endonuclease-assisted gold nanoparticle signal amplification. Anal Bioanal Chem 2021; 414:5239-5253. [PMID: 34374833 DOI: 10.1007/s00216-021-03564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
The continuous spread of invasive alien species, as zebra mussel (Dreissena polymorpha), is a major global concern and it is urgent to stop it. Early stages of an invasion are crucial and challenging; however, detection tools based on environmental DNA analysis are promising alternatives. We present an alternative DNA target amplification strategy for signal enhancement followed by dual-mode colorimetric naked eye and optical smartphone analysis for the early detection of zebra mussel environmental DNA. Target amplification was designed based on the nicking endonuclease probe cleavage upon probe and complementary target hybridization. The cleaved/intact probe interacts with DNA-modified nanoparticles for colorimetric detection. We have demonstrated that enzyme amplification strategy enhanced 12-fold the sensitivity by naked eye detection, achieving a detection limit of ~8 nM (4.48×1010 copies) in controlled conditions, whereas target in complex environmental samples allowed the detection of 22.5 nM (1.26×1011 copies). Competitive assays also showed that the system can discriminate specific zebra mussel DNA sequences from other DNA sequences. Additionally, smartphone analysis for DNA quantification further improved the sensitivity of its detection by 130-fold, more than 2 orders of magnitude, when applied to environmental samples. The limit of detection to 0.17 nM (9.52×108 copies) is based on RGB coordinates, which is especially relevant to monitor early aggregation stages, being more accurate and reducing naked eye detection subjectivity. DNA extracted from zebra mussel meat, zebra mussel contaminated river water, and non-contaminated river water samples were successfully tested. Dual-mode colorimetric detection is useful in field analysis without the need for expensive laboratory equipment.
Collapse
Affiliation(s)
- Monisha Elumalai
- Food Quality and Safety Research Group Av. Mestre José Veiga s/n, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Andrey Ipatov
- Food Quality and Safety Research Group Av. Mestre José Veiga s/n, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Joana Carvalho
- Food Quality and Safety Research Group Av. Mestre José Veiga s/n, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Joana Guerreiro
- Food Quality and Safety Research Group Av. Mestre José Veiga s/n, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| | - Marta Prado
- Food Quality and Safety Research Group Av. Mestre José Veiga s/n, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
6
|
Zhang W, Liu K, Zhang P, Cheng W, Zhang Y, Li L, Yu Z, Chen M, Chen L, Li L, Zhang X. All-in-one approaches for rapid and highly specific quantifcation of single nucleotide polymorphisms based on ligase detection reaction using molecular beacons as turn-on probes. Talanta 2020; 224:121717. [PMID: 33378999 DOI: 10.1016/j.talanta.2020.121717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022]
Abstract
Rapid, simple, specific and sensitive approaches for single nucleotide polymorphisms (SNPs) detection are essential for clinical diagnosis. In this study, all-in-one approaches, consisting of the whole detection process including ligase detection reaction (LDR) and real time quantitative polymerase chain reaction performed in one PCR tube by a one-step operation on a real-time PCR system using molecular beacon (MB) as turn-on probe, were developed for rapid, simple, specific and sensitive quantifcation of SNPs. High specificity of the all-in-one approach was achieved by using the LDR, which employs a thermostable and single-base discerning Hifi Taq DNA ligase to ligate adjacently hybridized LDR-specific probes. In addition, a highly specific probe, MB, was used to detect the products of all-in-one approach, which doubly enhances the specificity of the all-in-one approach. The linear dynamic range and high sensitivity of mutant DNA (MutDNA) and wild-type DNA (WtDNA) all-in-one approaches for the detection of MutDNA and WtDNA were studied in vitro, with a broad linear dynamic range of 0.1 fM to 1 pM and detection limits of 65.3 aM and 31.2 aM, respectively. In addition, the MutDNA and WtDNA all-in-one approaches were able to accurately detect allele frequency changes as low as 0.1%. In particular, the epidermal growth factor receptor T790M MutDNA frequency in the tissue of five patients with non-small cell lung cancer detected by all-in-one approaches were in agreement with clinical detection results, indicating the excellent practicability of the developed approaches for the quantification of SNPs in real samples. In summary, the developed all-in-one approaches exhibited promising potential for further applications in clinical diagnosis.
Collapse
Affiliation(s)
- Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Kangbo Liu
- Biological Testing Room, Henan Medical Equipment Inspection Institute, Henan Medical Equipment Inspection and Testing Engineering Technology Research Center, Henan Medical Equipment Biotechnology and Application Engineering Research Center, Zhengzhou, 450000, China
| | - Pin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Linfei Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Mengmeng Chen
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Lin Chen
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, 450063, Zhengzhou, China.
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; Departments of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Xianwei Zhang
- Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| |
Collapse
|
7
|
Sato K, Hosokawa K, Maeda M. Characterizing the non-crosslinked aggregation of DNA-modified gold nanoparticles: effects of DNA length and terminal base pair. Analyst 2020; 144:5580-5588. [PMID: 31418003 DOI: 10.1039/c9an00822e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We previously reported that fully complementary DNA duplexes formed on gold nanoparticle (GNP) surfaces aggregate at high salt concentrations. We previously reported that DNA-functionalized gold nanoparticles (GNPs) aggregate by hybridization with fully complementary DNA at high salt concentrations. Although this behavior has been applied to some precise naked-eye colorimetric analyses of DNA-related molecules, the aggregation mechanism is still unclear and comprehensive studies are needed. In this paper, we reveal the key factors that influence GNP aggregation. The effects of temperature, electrolyte concentration, probe length, and particle size, which control the stabilities of double-stranded DNAs and GNPs, were investigated. Larger GNPs aggregated more easily, and GNP aggregates were easily formed with ∼15-mer-long probes, while longer probes prevented aggregation, perhaps by preventing the formation of rigid double-stranded DNA layers, compared to shorter probes. Furthermore, GNPs with purine bases at their 5' ends aggregated more easily than those with these bases at their 3' ends. This phenomenon is different from that based on the melting-temperature trend calculated using the nearest-neighbor method.
Collapse
Affiliation(s)
- Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo, Tokyo 112-8681, Japan.
| | | | | |
Collapse
|
8
|
Iglesias MS, Grzelczak M. Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:263-284. [PMID: 32082965 PMCID: PMC7006498 DOI: 10.3762/bjnano.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments.
Collapse
Affiliation(s)
- María Sanromán Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-Sebastián, Spain
| | - Marek Grzelczak
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
9
|
Kaushal S, Nanda SS, Samal S, Yi DK. Strategies for the Development of Metallic‐Nanoparticle‐Based Label‐Free Biosensors and Their Biomedical Applications. Chembiochem 2019; 21:576-600. [DOI: 10.1002/cbic.201900566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sandeep Kaushal
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Sitansu Sekhar Nanda
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Shashadhar Samal
- Department of Materials Science and EngineeringGIST 123 Cheomdangwagi-ro Buk-gu 61005 Gwangju Republic of Korea
| | - Dong Kee Yi
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| |
Collapse
|
10
|
Abstract
Advances in nucleic acid sequencing and genotyping technologies have facilitated the discovery of an increasing number of single-nucleotide variations (SNVs) associated with disease onset, progression, and response to therapy. The reliable detection of such disease-specific SNVs can ensure timely and effective therapeutic action, enabling precision medicine. This has driven extensive efforts in recent years to develop novel methods for the fast and cost-effective analysis of targeted SNVs. In this Review, we highlight the most recent and significant advances made toward the development of such methodologies.
Collapse
Affiliation(s)
- Alireza Abi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afsaneh Safavi
- Department of Chemistry, Faculty of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
11
|
Coutinho C, Somoza Á. MicroRNA sensors based on gold nanoparticles. Anal Bioanal Chem 2018; 411:1807-1824. [PMID: 30390112 DOI: 10.1007/s00216-018-1450-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs, the dysregulation of which has been associated with the progression of several human diseases, including cancer. Interestingly, these molecules can be used as biomarkers for early disease diagnosis and can be found in a variety of body fluids and tissue samples. However, their specific properties and very low concentrations make their detection rather challenging. In this regard, current detection methods are complex, cost-ineffective, and of limited application in point-of-care settings or resource-limited facilities. Recently, nanotechnology-based approaches have emerged as promising alternatives to conventional miRNA detection methods and paved the way for research towards sensitive, fast, and low-cost detection systems. In particular, due to their exceptional properties, the use of gold nanoparticles (AuNPs) has significantly improved the performance of miRNA biosensors. This review discusses the application of AuNPs in different miRNA sensor modalities, commenting on recently reported examples. A practical overview of each modality is provided, highlighting their future use in clinical diagnosis. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Catarina Coutinho
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) & Nanobiotecnología (IMDEA Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain.
| |
Collapse
|
12
|
Aboudzadeh MA, Sanromán-Iglesias M, Lawrie CH, Grzelczak M, Liz-Marzán LM, Schäfer T. Blocking probe as a potential tool for detection of single nucleotide DNA mutations: design and performance. NANOSCALE 2017; 9:16205-16213. [PMID: 29043363 DOI: 10.1039/c7nr06675a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing strategies to detect single nucleotide DNA mutations associated with treatment decisions in cancer patients from liquid biopsies is a rapidly emerging area of personalized medicine that requires high specificity. Here we report how to design an easy enzyme-free approach that could create a platform for detection of L858R mutation of EGFR that is a predictive biomarker of tyrosine kinase treatment in many cancers. This approach includes the addition of blocking probes with the antisense ssDNA at different blocking positions and different concentrations such as to avoid re-annealing with the respective sense ssDNA. The successful blocking strategy was corroborated by fluorescence spectroscopy in solution using two distinct FRET pairs and quartz crystal microbalance with dissipation (QCM-D) measurements under comparable experimental conditions, as the hybridization rate-limiting step in both methods is the nucleation process. The efficiency of hybridization of each blocking probe was strongly dependent on its position particularly when the analyte possesses a secondary hairpin-structure. We tested the performance of blocking probes in combination with gold nanoparticles; the obtained results were in agreement with those of QCM-D. These findings could facilitate the development of better biosensors, especially those using probes containing secondary structure.
Collapse
Affiliation(s)
- M Ali Aboudzadeh
- Polymat, University of the Basque Country, 20018 Donostia-San Sebastián, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Tsai TT, Huang CY, Chen CA, Shen SW, Wang MC, Cheng CM, Chen CF. Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device. ACS Sens 2017; 2:1345-1354. [PMID: 28901134 DOI: 10.1021/acssensors.7b00450] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have developed a colorimetric sensing strategy employing gold nanoparticles and a paper-based analytical platform for the diagnosis of tuberculosis (TB). By utilizing the surface plasmon resonance effect, we were able to monitor changes in the color of a gold nanoparticle colloid based on the effects of single-stranded DNA probe molecules hybridizing with targeted double-stranded TB DNA. The hybridization event changes the surface charge density of the nanoparticles, causing them to aggregate to various degrees, which modifies the color of the solution in a manner that can be readily measured to determine the concentration of the targeted DNA analyte. In order to adapt this TB diagnosis method to resource-limited settings, we extended this label-free oligonucleotide and unmodified gold nanoparticle solution-based technique to a paper-based system that can be measured using a smartphone to obtain rapid parallel colorimetric results with low reagent consumption and without the need for sophisticated analytical equipment. In this study, we investigated various assay conditions, including the denaturing temperature and time, different oligonucleotide probe sequences, as well as the ratio of single stranded probe and double stranded target DNA. After optimizing these variables, we were able to achieve a detection limit of 1.95 × 10-2 ng/mL for TB DNA. Furthermore, multiple tests could be performed simultaneously with a 60 min turnaround time.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Department
of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chia-Yu Huang
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chung-An Chen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Wei Shen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Mei-Chia Wang
- Department
of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chao-Min Cheng
- Institute
of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chien-Fu Chen
- Institute
of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
14
|
The response of citrate functionalised gold and silver nanoparticles to the addition of heavy metal ions. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Li L, Xiao X, Ge J, Han M, Zhou X, Wang L, Su X, Yu C. Discrimination Cascade Enabled Selective Detection of Single-Nucleotide Mutation. ACS Sens 2017; 2:419-425. [PMID: 28723215 DOI: 10.1021/acssensors.7b00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Owing to the significance of single nucleotide mutation (SNM) for personalized medicine, the detection of SNM with high accuracy has recently attracted considerable interest. Here, we present a kinetic method for selective detection of SNM based on a discrimination cascade constructed by combining the toehold strand displacement (TSD) and endonuclease IV (Endo IV) catalyzed hydrolysis. The single-nucleotide specificity of the two DNA reactions allows highly selective detection of all types of single nucleotide changes (including single-nucleotide insertion and deletion), achieving a high discrimination factor with a median of 491 which is comparable with recently reported methods. For the first time, the enzyme assisted nucleic acid assay was characterized by single molecule analysis on total internal reflection fluorescence microscope (TIRFM) suggesting that the two steps do not work independently and the rate of TSD can be tuned by Endo IV facilitated conformation selection. The effective discrimination of the point mutation of BRAF gene in cancer and normal cell line suggests that this method can be a prominent post-PCR genotyping assay.
Collapse
Affiliation(s)
- Lidan Li
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianjin Xiao
- Family
Planning Research Institute/Center of Reproductive Medicine, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jingyang Ge
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Manli Han
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Zhou
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Wang
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyuan Yu
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Sanromán-Iglesias M, Lawrie CH, Liz-Marzán LM, Grzelczak M. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences. Bioconjug Chem 2017; 28:903-906. [DOI: 10.1021/acs.bioconjchem.7b00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- María Sanromán-Iglesias
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Oncology
Area, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
| | - Charles H. Lawrie
- Oncology
Area, Biodonostia Research Institute, 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 20014 Donostia-San
Sebastián, Spain
| | - Marek Grzelczak
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 20014 Donostia-San
Sebastián, Spain
| |
Collapse
|