1
|
Santa C, Park S, Gejt A, Clark HA, Hengerer B, Sergelen K. Real-time monitoring of vancomycin using a split-aptamer surface plasmon resonance biosensor. Analyst 2024; 150:131-141. [PMID: 39584594 DOI: 10.1039/d4an01226g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Real-time monitoring of therapeutic drugs is crucial for treatment management and pharmacokinetic studies. We present the optimization and affinity tuning of split-aptamer sandwich assay for real-time monitoring of the narrow therapeutic window drug vancomycin, using surface plasmon resonance (SPR). To achieve reversible, label-free sensing of small molecules by SPR, we adapted a vancomycin binding aptamer in a sandwich assay format through the split-aptamer approach. By evaluating multiple split sites within the secondary structure of the original aptamer, we identified position 27 (P27) as optimal for preserving target affinity, ensuring reversibility, and maximizing sensitivity. The assay demonstrated robust performance under physiologically relevant ranges of pH and divalent cations, and the specific ternary complex formation of the aptamer split segments with the analyte was confirmed by circular dichroism spectroscopy. Subsequently, we engineered a series of split-aptamer pairs with increasing complementarity in the stem regions, improving both the affinity and limit of detection up to 10-fold, as compared to the primary P27 pair. The kinetics of the engineered split-aptamer pairs were evaluated, revealing fast association and dissociation rates, confirming improved affinity and detection limits across variants. Most importantly, the reversibility of the assay, essential for real-time monitoring, was maintained in all pairs. Finally, the assay was further validated in complex biological matrices, including the cerebrospinal fluid from dogs and diluted plasma from rats, demonstrating functionality in biological environments and stability exceeding 9 hours. Our study paves the way for applications of split-aptamers in real-time monitoring of small molecules, with potential implications for in vivo therapeutic drug monitoring and pharmacokinetic studies.
Collapse
Affiliation(s)
| | | | - Artur Gejt
- BioMed X Institute, Heidelberg, Germany.
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Germany
| | - Heather A Clark
- School of Biological and Health Systems Engineering, Arizona State University, USA
| | - Bastian Hengerer
- Boehringer Ingelheim Pharma GmbH & Co. KG, CNS Research, Germany
| | | |
Collapse
|
2
|
Yoshikawa AM, Rangel AE, Zheng L, Wan L, Hein LA, Hariri AA, Eisenstein M, Soh HT. A massively parallel screening platform for converting aptamers into molecular switches. Nat Commun 2023; 14:2336. [PMID: 37095144 PMCID: PMC10126150 DOI: 10.1038/s41467-023-38105-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
Aptamer-based molecular switches that undergo a binding-induced conformational change have proven valuable for a wide range of applications, such as imaging metabolites in cells, targeted drug delivery, and real-time detection of biomolecules. Since conventional aptamer selection methods do not typically produce aptamers with inherent structure-switching functionality, the aptamers must be converted to molecular switches in a post-selection process. Efforts to engineer such aptamer switches often use rational design approaches based on in silico secondary structure predictions. Unfortunately, existing software cannot accurately model three-dimensional oligonucleotide structures or non-canonical base-pairing, limiting the ability to identify appropriate sequence elements for targeted modification. Here, we describe a massively parallel screening-based strategy that enables the conversion of virtually any aptamer into a molecular switch without requiring any prior knowledge of aptamer structure. Using this approach, we generate multiple switches from a previously published ATP aptamer as well as a newly-selected boronic acid base-modified aptamer for glucose, which respectively undergo signal-on and signal-off switching upon binding their molecular targets with second-scale kinetics. Notably, our glucose-responsive switch achieves ~30-fold greater sensitivity than a previously-reported natural DNA-based switch. We believe our approach could offer a generalizable strategy for producing target-specific switches from a wide range of aptamers.
Collapse
Affiliation(s)
- Alex M Yoshikawa
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Liwei Zheng
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Leighton Wan
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Linus A Hein
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Amani A Hariri
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
3
|
Development of Fluorescent Aptasensors Based on G-Quadruplex Quenching Ability for Ochratoxin A and Potassium Ions Detection. BIOSENSORS 2022; 12:bios12060423. [PMID: 35735570 PMCID: PMC9221108 DOI: 10.3390/bios12060423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
G-quadruplexes have received significant attention in aptasensing due to their structural polymorphisms and unique binding properties. In this work, we exploited the fluorescence-quenching properties of G-quadruplex to develop a simple, fast, and sensitive platform for fluorescence detection of ochratoxin A (OTA) and potassium ions (K+) with a label-free fluorophore and quencher strategy. The quenching ability of G-quadruplex was confirmed during the recognition process after the formation of the G-quadruplex structure and the quenching of the labeled fluorescein fluorophore (FAM). The fluorescence-quenching mechanism was studied by introducing specific ligands of G-quadruplex to enhance the quenching effect, to show that this phenomenon is due to photo-induced electron transfer. The proposed fluorescence sensor based on G-quadruplex quenching showed excellent selectivity with a low detection limit of 0.19 nM and 0.24 µM for OTA and K+, respectively. Moreover, we demonstrated that our detection method enables accurate concentration determination of real samples with the prospect of practical application. Therefore, G-quadruplexes can be excellent candidates as quenchers, and the strategy implemented in the study can be extended to an aptasensor with G-quadruplex.
Collapse
|
4
|
Zheng P, Kasani S, Tan W, Boryczka J, Gao X, Yang F, Wu N. Plasmon-enhanced near-infrared fluorescence detection of traumatic brain injury biomarker glial fibrillary acidic protein in blood plasma. Anal Chim Acta 2022; 1203:339721. [DOI: 10.1016/j.aca.2022.339721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
|
5
|
Dual-ratiometric electrochemical aptasensor enabled by programmable dynamic range: Application for threshold-based detection of aflatoxin B1. Biosens Bioelectron 2022; 195:113634. [PMID: 34571480 DOI: 10.1016/j.bios.2021.113634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/22/2021] [Accepted: 09/12/2021] [Indexed: 12/11/2022]
Abstract
Aptamer-based sensor with high-specificity typically has a fixed linear range due to the host-guest binding. To expand the dynamic range for multiple scenarios, we report here a dual-ratiometric electrochemical aptasensor that integrates two aptamer profiles with varied affinity into a single sensing interface for aflatoxin B1 (AFB1) detection. Using functional aptamer as recognition element and generator of signals, we fabricate the dual-ratiometric aptasensor with anthraquinone loaded reduced graphene oxide (AQ-rGO), methylene blue labeled hairpin DNA (MB-DNA), and ferrocene labeled linear aptamer (Fc-apt), using MB and Fc probes to work in tandem while AQ as reference. The current of Fc (IFc) is used to detect the low-concentration analyte, and that of MB (IMB) varies when the concentration of AFB1 reaches a threshold. The threshold switch for IMB could be tuned by engineering the quantity ratio of Fc-apt and MB-DNA (a ratio of 1:1 is used here). The aptasensor can rapidly achieve the positive (+)/negative (-) detection of AFB1 with a threshold concentration of 10 pg mL-1, while the quantitative detection employs the ratio of current of AQ, MB, and Fc (i.e., IAQ/IMB and IAQ/IFc) as yardsticks, offering two linear ranges of 10-106 and 10-2-5 × 104 pg mL-1, respectively. The aptasensor is successfully used to monitor the amount of AFB1 in a 7-days mildew process of peanut. Such a protocol opens a new way for the design of sensors with the programmable linear range in the advanced biological and chemical sensing.
Collapse
|
6
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
7
|
Seherler S, Bozdogan A, Ozal Ildeniz TA, Kok FN, Anac Sakir I. Detection of cholera toxin with surface plasmon field-enhanced fluorescent spectroscopy. Biotechnol Appl Biochem 2021; 69:1557-1566. [PMID: 34297408 DOI: 10.1002/bab.2227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022]
Abstract
In this work, a biosensor based on surface plasmon field-enhanced florescence spectroscopy (SPFS) method was successfully constructed to detect the truncated form of cholera toxin, that is, its beta subunit (CTX-B). CTX-B is a relatively small molecule (12 kDa) and it was chosen as model analyte for the detection of protein toxins originated from waterborne pathogens. Recognition layer was prepared on gold-coated LaSFN9 glasses modified with 11-mercaptoundecanoic acid (11-MUA). Biotin-conjugated anti-CTX-B polyclonal antibody (B-Ab) was immobilized on streptavidin (SA) layer constructed on the 11-MUA-modified surface. CTX-B amount was determined with direct assay using B-Ab in surface plasmon resonance (SPR) mode and with sandwich assay in SPFS mode using Cy5-conjugated anti-CTX-B polyclonal antibody. Minimum detected CTX-B concentrations were 10 and 0.01 μg/ml with SPR and SPFS, respectively, showing the sensitivity of the SPFS system over the conventional one. The detection was done in 2-6 h, which was faster than both culture and polymerase chain reaction (PCR)-based methods. Stability tests were performed with SA-coated sensors (excluding B-Ab). In this form, the layer was stable after 30 days of storage in phosphate-buffered saline (PBS; 0.01 M, pH = 7.4) at +4°C. B-Ab layer was formed immediately on them before each measurement.
Collapse
Affiliation(s)
- Sebnem Seherler
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Anil Bozdogan
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, Tulln, Austria
| | - Tugba Arzu Ozal Ildeniz
- Department of Medical Engineering, Faculty of Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fatma Nese Kok
- Molecular Biology-Genetics and Biotechnology Programme, Istanbul Technical University, Istanbul, Turkey
| | - Ilke Anac Sakir
- Department of Material Science and Engineering, Gebze Technical University, Kocaeli, Turkey.,Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
8
|
Aspermair P, Ramach U, Reiner-Rozman C, Fossati S, Lechner B, Moya SE, Azzaroni O, Dostalek J, Szunerits S, Knoll W, Bintinger J. Dual Monitoring of Surface Reactions in Real Time by Combined Surface-Plasmon Resonance and Field-Effect Transistor Interrogation. J Am Chem Soc 2020; 142:11709-11716. [PMID: 32407629 DOI: 10.1021/jacs.9b11835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
By combining surface plasmon resonance (SPR) and electrolyte gated field-effect transistor (EG-FET) methods in a single analytical device we introduce a novel tool for surface investigations, enabling simultaneous measurements of the surface mass and charge density changes in real time. This is realized using a gold sensor surface that simultaneously serves as a gate electrode of the EG-FET and as the SPR active interface. This novel platform has the potential to provide new insights into (bio)adsorption processes on planar solid surfaces by directly relating complementary measurement principles based on (i) detuning of SPR as a result of the modification of the interfacial refractive index profile by surface adsorption processes and (ii) change of output current as a result of the emanating effective gate voltage modulations. Furthermore, combination of the two complementary sensing concepts allows for the comparison and respective validation of both analytical techniques. A theoretical model is derived describing the mass uptake and evolution of surface charge density during polyelectrolyte multilayer formation. We demonstrate the potential of this combined platform through the observation of layer-by-layer assembly of PDADMAC and PSS. These simultaneous label-free and real-time measurements allow new insights into complex processes at the solid-liquid interface (like non-Fickian ion diffusion), which are beyond the scope of each individual tool.
Collapse
Affiliation(s)
- Patrik Aspermair
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.,CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.,CNRS, Centrale Lille, ISEN, Universite Valenciennes, UMR 8520-IEMN, Universite de Lille, 59000 Lille, France
| | - Ulrich Ramach
- CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Ciril Reiner-Rozman
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Stefan Fossati
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Bernadette Lechner
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Sergio E Moya
- CIC biomaGUNE, Paseo Miramon 182 C, 20014 San Sebastian, Spain
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Suc. 4, CC 16, 1900 La Plata, Argentina
| | - Jakub Dostalek
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Sabine Szunerits
- CNRS, Centrale Lille, ISEN, Universite Valenciennes, UMR 8520-IEMN, Universite de Lille, 59000 Lille, France
| | - Wolfgang Knoll
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria.,CEST Competence Center for Electrochemical Surface Technologies, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Johannes Bintinger
- Biosensor Technologies, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
9
|
Plasmonic biosensors relying on biomolecular conformational changes: Case of odorant binding proteins. Methods Enzymol 2020; 642:469-493. [PMID: 32828265 DOI: 10.1016/bs.mie.2020.04.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plasmonic nanostructures serve in a range of analytical techniques that were developed for the analysis of chemical and biological species. Among others, they have been pursued for the investigation of odorant binding proteins (OBP) and their interaction with odorant molecules. These compounds are low molecular weight agents, which makes their direct detection with conventional surface plasmon resonance (SPR) challenging. Therefore, other plasmonic sensor modalities need to be implemented for the detection and interaction analysis of OBPs. This chapter provides a guide for carrying out such experiments based on two techniques that take advantage of conformation changes of OBPs occurring upon specific interaction with their affinity partners. First, there is discussed SPR monitoring of conformation changes of biomolecules that are not accompanied by a strong increase in the surface mass density but rather with its re-distribution perpendicular to the surface. Second, the implementation of surface plasmon-enhanced fluorescence energy transfer is presented for the sensitive monitoring of conformational changes of biomolecules tagged with a fluorophore at its defined part. Examples from our and other laboratories illustrate the performance of these concepts and their applicability for the detection of low molecular weight odorant molecules by the use of OBPs attached to the sensor surface is discussed.
Collapse
|
10
|
Xue S, Jiang XF, Zhang G, Wang H, Li Z, Hu X, Chen M, Wang T, Luo A, Ho HP, He S, Xing X. Surface Plasmon-Enhanced Optical Formaldehyde Sensor Based on CdSe@ZnS Quantum Dots. ACS Sens 2020; 5:1002-1009. [PMID: 32181650 DOI: 10.1021/acssensors.9b02462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the first time, a reproducible surface plasmon-enhanced optical sensor for the detection of gaseous formaldehyde was proposed, which was fabricated by depositing a mixture of CdSe@ZnS quantum dots (QDs), fumed silica (FS), and gold nanoparticles (GNs) on the surface of a silica sphere array to meet the urgent requirement of a rapid, sensitive, and highly convenient formaldehyde detection method. Because of the spectral overlap between QDs and GNs, plasmon-enhanced fluorescence was observed in the film of QDs/FS/GNs. When exposed to formaldehyde molecules, the enhanced fluorescence was quenched linearly with the increase of formaldehyde concentration in the range of 0.5-2.0 ppm. The reason is attributed to the nonradiative electron transfer from QDs to the carbonyl of formaldehyde molecules with the assistance of amino groups. Our results demonstrate that the designed sensors are capable of detecting ultralow concentration gaseous formaldehyde at room temperature with a fast response-recovery time and excellent selectivity, stability, and reproducibility. This work provides a simple and low-cost approach for optical formaldehyde sensor fabrication and shows promising applications in environmental detection.
Collapse
Affiliation(s)
- Sheng Xue
- College of Biophotonics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Xiao-Fang Jiang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Geng Zhang
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Haiyan Wang
- School of Information Technology, Guangdong Industry Polytechnic, Guangzhou 510330, China
| | - Zongbao Li
- School of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Xiaowen Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Mingyu Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Tianci Wang
- College of Biophotonics, South China Normal University, Guangzhou 510006, China
| | - Aiping Luo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Ho-pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Sailing He
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Xiaobo Xing
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
11
|
Cao SH, Weng YH, Xie KX, Wang ZC, Pan XH, Chen M, Zhai YY, Xu LT, Li YQ. Surface Plasmon Coupled Fluorescence-Enhanced Interfacial “Molecular Beacon” To Probe Biorecognition Switching: An Efficient, Versatile, and Facile Signaling Biochip. ACS APPLIED BIO MATERIALS 2019; 2:625-629. [DOI: 10.1021/acsabm.8b00751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuo-Hui Cao
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Department of Electronic Science, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Research Institute, Xiamen University, Shenzhen 518000, P. R. China
| | - Yu-Hua Weng
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai-Xin Xie
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zheng-Chuang Wang
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xiao-Hui Pan
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Min Chen
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Yun Zhai
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lin-Tao Xu
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yao-Qun Li
- Department of Chemistry and MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
12
|
Sergelen K, Liedberg B, Knoll W, Dostálek J. A surface plasmon field-enhanced fluorescence reversible split aptamer biosensor. Analyst 2018; 142:2995-3001. [PMID: 28744534 DOI: 10.1039/c7an00970d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surface plasmon field-enhanced fluorescence is reported for the readout of a heterogeneous assay that utilizes low affinity split aptamer ligands. Weak affinity ligands that reversibly interact with target analytes hold potential for facile implementation in continuous monitoring biosensor systems. This functionality is not possible without the regeneration of more commonly used assays relying on high affinity ligands and end-point measurement. In fluorescence-based sensors, the use of low affinity ligands allows avoiding this step but it imposes a challenge associated with the weak optical response to the specific capture of the target analyte which is also often masked by a strong background. The coupling of fluorophore labels with a confined field of surface plasmons is reported for strong amplification of the fluorescence signal emitted from the sensor surface and its efficient discrimination from the background. This optical scheme is demonstrated for time-resolved analysis of chosen model analytes - adenoside and adenosine triphosphate - with a split aptamer that exhibits an equilibrium affinity binding constant between 0.73 and 1.35 mM. The developed biosensor enables rapid and specific discrimination of target analyte concentration changes from low μM to mM in buffer as well as in 10% serum.
Collapse
Affiliation(s)
- K Sergelen
- BioSensor Technologies, AIT-Austrian Institute of Technology, Muthgasse 11, 1190 Vienna, Austria.
| | | | | | | |
Collapse
|
13
|
Nicol A, Knoll W. Characteristics of Fluorescence Emission Excited by Grating-Coupled Surface Plasmons. PLASMONICS (NORWELL, MASS.) 2018; 13:2337-2343. [PMID: 30595677 PMCID: PMC6280977 DOI: 10.1007/s11468-018-0757-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 06/09/2023]
Abstract
Dye molecules placed on metallic gratings can experience an enhanced electromagnetic field if illuminated under surface plasmon excitation conditions, a situation that can be employed for sensor applications. The fluorescence emission in this situation exhibits a characteristic emission polarization and geometry given by the fluorophore/grating interaction. We present experiments visualizing the full shape of the emission profiles and demonstrate how they can be manipulated by means of the grating constant. The excitation and emission processes taking place on the grating surface are characterized by polarization sensitive measurements.
Collapse
Affiliation(s)
- Andreas Nicol
- Bayer AG, Engineering and Technology, Building E 41, 51368 Leverkusen, Germany
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
- University of Natural Resources and Life Sciences, Vienna,(BOKU), Vienna, Austria
| |
Collapse
|
14
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|