1
|
Wang Y, An N, Huang B, Zhai Y. Non-sticky SiN x nanonets for single protein denaturation analysis. Faraday Discuss 2025; 257:51-59. [PMID: 39444278 DOI: 10.1039/d4fd00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Proteins play crucial roles in nearly all biological activities, with their functional structures deriving from stable folded conformations. Protein denaturation, induced by chemical and physical agents, is a complex process where proteins lose their stable structures, thereby impairing their biological functions. Characterizing protein denaturation at the single-molecule level remains a significant challenge. In this study, we developed non-adhesive silicon nitride nanonets coated with polyethylene glycol to capture individual proteins. We utilized these nanonets to investigate the denaturation of ovalbumin induced by guanidine hydrochloride (Gdn-HCl) and lead chloride. The entire denaturation and renaturation processes of a single ovalbumin molecule were monitored via ionic current measurements through the nanonets. These non-sticky nanonets offer a versatile tool for real-time studies of structural changes during protein denaturation.
Collapse
Affiliation(s)
- Yuanhao Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China.
| | - Nan An
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China.
| | - Bintong Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China.
- School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yueming Zhai
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
2
|
Jin Y, Wang J, Tang R, Jiang Y, Xi D. Nucleic Acid-Based Biological Nanopore Sensing Strategies for Tumor Marker Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21327-21340. [PMID: 39356337 DOI: 10.1021/acs.langmuir.4c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Cancer, which is characterized by high mortality rates, poses a significant threat to global human health. Early diagnosis is of paramount importance in managing cancer, and tumor markers have emerged as crucial indicators for achieving this goal. The advent of precision medicine has further emphasized the need for the effective detection of these markers. However, traditional detection methods are hampered by numerous limitations. In recent years, nanopore technology has emerged as a promising alternative, due to its unique physical and chemical properties, which facilitate rapid, label-free, and amplification-free detection. This Review focuses on the direct detection of tumor markers through nucleic acid analysis and indirect detection mediated by nucleic acids and facilitated by biological nanopores. Furthermore, it also discusses the challenges and prospects of applying biological nanopore sensing technology in early cancer diagnosis, underscoring its potential to revolutionize tumor marker detection.
Collapse
Affiliation(s)
- Yameng Jin
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Junxiao Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Ruping Tang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Yao Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| |
Collapse
|
3
|
Napoletano S, Battista E, Netti PA, Causa F. MicroLOCK: Highly stable microgel biosensor using locked nucleic acids as bioreceptors for sensitive and selective detection of let-7a. Biosens Bioelectron 2024; 260:116406. [PMID: 38805889 DOI: 10.1016/j.bios.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK). By 3D modeling and computational analysis, we designed molecular beacons (MB) inserting spot-on LNAs for high specificity among targets with high sequence similarity (95%). MicroLOCK can reversibly detect microRNA targets in a tiny amount of biological sample (2 μL) at 25 °C with a higher sensitivity (LOD 1.3 fM) without any reverse transcription or amplification. MicroLOCK can hybridize the target with fast kinetic (about 30 min), high duplex stability without interferences from the polymer interface, showing high signal-to-noise ratio (up to S/N = 7.3). MicroLOCK also demonstrated excellent resistance to highly nuclease-rich environments, in real samples. These findings represent a great breakthrough for using the LNA in developing low-cost biosensing approaches and can be applied not only for nucleic acids and protein detection but also for real-time imaging and quantitative assessment of gene targeting both in vitro and in vivo.
Collapse
Affiliation(s)
- Sabrina Napoletano
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University "Federico II", Piazzale Tecchio 80, 80125, Naples, Italy; Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
| |
Collapse
|
4
|
Li Y, Yang Y, Zhong C, Xiao D, Zhou C. Highly Sensitive Detection of T790 M with a Three-Level Characteristic Current by Thymine-Hg(II)-Thymine in the α-Hemolysin Nanopore. Anal Chem 2024; 96:3587-3592. [PMID: 38372205 DOI: 10.1021/acs.analchem.3c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sensitive detection of resistance mutation T790 M is of great significance for early diagnosis and prognostic monitoring of non-small-cell lung cancer (NSCLC). In this paper, we showed a highly sensitive detection strategy for T790 M using a three-level characteristic current signal pattern in an α-hemolysin nanopore. A probe was designed that formed a C-T mismatched base pair with wild-type/P and a T-T mismatched with the T790M/P. The T790M/P produced a unique three-level characteristic current signal in the presence of mercury ions(II): first, T790M-Hg2+-P entering the vestibule of α-HL under the transmembrane potential and overhang of probe occupying the β-barrel, then probe unzipping from the T790M/P, T790 M temporally residing inside the nanocavity due to the interaction with Hg(II), and finally T790 M passing through the β-barrel. The blocking current distribution was concentrated with a small relative standard deviation of about 3%, and the signal peaks of T790 M and wild-type can be completely separated with a high separation resolution of more than 2.5, which achieved the highly sensitive detection of T790 M down to 0.001 pM (confidence level P 95%) with a linear range from 0.001 pM to 1 nM in human serum samples. This highly sensitive recognition strategy enables the detection of low abundance T790 M and provides a method for prognostic monitoring in NSCLC patients.
Collapse
Affiliation(s)
- Yaping Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yongqi Yang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chunmeng Zhong
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Berkovich AK, Pyshkina OA, Zorina AA, Rodin VA, Panova TV, Sergeev VG, Zvereva ME. Direct Determination of the Structure of Single Biopolymer Molecules Using Nanopore Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S234-S248. [PMID: 38621753 DOI: 10.1134/s000629792414013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 04/17/2024]
Abstract
This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.
Collapse
Affiliation(s)
- Anna K Berkovich
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Olga A Pyshkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna A Zorina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir A Rodin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana V Panova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir G Sergeev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria E Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Abstract
Accurate and sensitive detection of single nucleotide polymorphism (SNP) holds significant clinical implications, especially in the field of cancer diagnosis. Leveraging its high accuracy and programmability, the CRISPR system emerges as a promising platform for advancing the identification of SNPs. In this study, we compared two type V CRISPR/Cas systems (Cas12a and Cas14a) for the identification of cancer-related SNP. Their identification performances were evaluated by characterizing their mismatch tolerance to the BRAF gene. We found that the CRISPR/Cas14a system exhibited superior accuracy and robustness over the CRISPR/Cas12a system for SNP detection. Furthermore, blocker displacement amplification (BDA) was combined with the CRISPR/Cas14a system to eliminate the interference of the wild type (WT) and increase the detection accuracy. In this strategy, we were able to detect BRAF V600E as low as 103 copies with a sensitivity of 0.1% variant allele frequency. Moreover, the BDA-assisted CRISPR/Cas14a system has been applied to identify the BRAF mutation from human colorectal carcinoma cells, achieving a high sensitivity of 0.5% variant allele frequency, which is comparable to or even superior to those of most commercially available products. This work has broadened the scope of the CRISPR system and provided a promising method for precision medicine.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shengjie Shao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Guan X, Li H, Chen L, Qi G, Jin Y. Glass Capillary-Based Nanopores for Single Molecule/Single Cell Detection. ACS Sens 2023; 8:427-442. [PMID: 36670058 DOI: 10.1021/acssensors.2c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A glass capillary-based nanopore (G-nanopore), due to its tapered tip, easy tunability in orifice size, and especially its flexible surface modifications that can be tailored to effectively capture and enhance the ionic current signal of single entities (single molecules, single cells, and single particles), offers a powerful and nanoconfined sensing platform for diverse biological measurements of single cells and single molecules. Compared with other artificial two-dimensional solid-state nanopores, its conical tip and high spatial and temporal resolution characteristics facilitate noninvasive single molecule and selected area (subcellular) single cell detections (e.g., DNA mutations, highly expressed proteins, and small molecule markers that reflect the change characteristics of the tumor), as a small G-nanopore (≤100 nm) does negligible damage to cell functions and cell membrane integrity when inserted through the cell membrane. In this brief review, we summarize the preparation of G-nanopores and discuss the advantages of them as solid-state sensing platforms for single molecule and single cell detection applications as well as for cancer diagnosis and treatment applications. We also describe the current bottlenecks that limit the widespread use of G-nanopores in clinical applications and provide an outlook on future developments. The brief review will provide the reader with a quick survey of this field and facilitate the rapid development of a G-nanopore sensing platform for future tumor diagnosis and personalized medicine based on single-molecule/single-cell bioassay.
Collapse
Affiliation(s)
- Xin Guan
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Limei Chen
- School of Basic Medical Sciences, Beihua University, Jilin 132013, Jilin, P. R. China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
8
|
Ying YL, Hu ZL, Zhang S, Qing Y, Fragasso A, Maglia G, Meller A, Bayley H, Dekker C, Long YT. Nanopore-based technologies beyond DNA sequencing. NATURE NANOTECHNOLOGY 2022; 17:1136-1146. [PMID: 36163504 DOI: 10.1038/s41565-022-01193-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the biological processes of molecular recognition and transportation across membranes, nanopore techniques have evolved in recent decades as ultrasensitive analytical tools for individual molecules. In particular, nanopore-based single-molecule DNA/RNA sequencing has advanced genomic and transcriptomic research due to the portability, lower costs and long reads of these methods. Nanopore applications, however, extend far beyond nucleic acid sequencing. In this Review, we present an overview of the broad applications of nanopores in molecular sensing and sequencing, chemical catalysis and biophysical characterization. We highlight the prospects of applying nanopores for single-protein analysis and sequencing, single-molecule covalent chemistry, clinical sensing applications for single-molecule liquid biopsy, and the use of synthetic biomimetic nanopores as experimental models for natural systems. We suggest that nanopore technologies will continue to be explored to address a number of scientific challenges as control over pore design improves.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Zheng-Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China
| | - Shengli Zhang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Yujia Qing
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Alessio Fragasso
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Amit Meller
- Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
9
|
Li MY, Peng LM, Chen XP. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Front Cardiovasc Med 2022; 9:966261. [PMID: 36312261 PMCID: PMC9606405 DOI: 10.3389/fcvm.2022.966261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Drug-induced cardiotoxicity (DICT) is an important concern of drug safety in both drug development and clinical application. The clinical manifestations of DICT include cardiomyopathy, arrhythmia, myocardial ischemia, heart failure, and a series of cardiac structural and functional changes. The occurrence of DICT has negative impacts on the life quality of the patients, brings additional social and economic burden. It is important to identify the potential factors and explore the mechanisms of DICT. Traditional cardiovascular risk factors can only partially explain the risk of DICT. Pharmacogenomic studies show accumulated evidence of genetics in DICT and suggest the potential to guide precision therapy to reduce risk of cardiotoxicity. The comprehensive application of technologies such as third-generation sequencing, human induced pluripotent stem (iPS) cells and genome editing has promoted the in-depth understanding of the functional role of susceptible genes in DICT. This paper reviewed drugs that cause DICT, the clinical manifestations and laboratory tests, as well as the related content of genetic variations associated with the risk of DICT, and further discussed the implication of new technologies in pharmacogenomics of DICT.
Collapse
Affiliation(s)
- Mo-Yun Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Li-Ming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Li-Ming Peng
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Xiao-Ping Chen
| |
Collapse
|
10
|
Denuga S, Whelan DE, O'Neill SP, Johnson RP. Capture and analysis of double‐stranded DNA with the α‐hemolysin nanopore: Fundamentals and applications. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202200001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | | | | | - Robert P. Johnson
- School of Chemistry University College Dublin Ireland
- UCD‐Centre for Food Safety University College Dublin Dublin Ireland
| |
Collapse
|
11
|
van Kooten XF, Rozevsky Y, Marom Y, Ben Sadeh E, Meller A. Purely electrical SARS-CoV-2 sensing based on single-molecule counting. NANOSCALE 2022; 14:4977-4986. [PMID: 35258059 PMCID: PMC8969453 DOI: 10.1039/d1nr07787b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 05/23/2023]
Abstract
The majority of RNA based COVID-19 diagnostics employ enzymatic amplification to achieve high sensitivity, but this relies on arbitrary thresholding, which complicates the comparison of test results and may lead to false outcomes. Here we introduce solid-state nanopore sensing for label-free quantification of SARS-CoV-2 RNA in clinical nasal swab samples. This PCR-free method involves reverse transcribing a target gene on the viral RNA before enzymatically digesting all but the resulting dsDNA. Ratiometric quantification of RNA abundance is achieved by single-molecule counting and length-based nanopore identification of dsDNA from a SARS-CoV-2 gene and a human reference gene. We graded nasal swab samples from >15 subjects and find that the SARS-CoV-2 ratiometric nanopore index correlates well with the reported RT-qPCR threshold cycle for positive classified samples. Remarkably, nanopore analysis also reports quantitative positive outcomes for clinical samples classified as negative by RT-qPCR, suggesting that the method may be used to diagnose COVID-19 in samples that may evade detection. We show that the sample preparation workflow can be implemented using a compact microfluidic device with integrated thermal control for semi-automated processing of extremely small sample volumes, offering a viable route towards automated, fast and affordable RNA quantification in a small and portable device.
Collapse
Affiliation(s)
| | - Yana Rozevsky
- Department of Biomedical Engineering, Technion-IIT, Haifa 32000, Israel.
| | - Yulia Marom
- Department of Biomedical Engineering, Technion-IIT, Haifa 32000, Israel.
| | - Efrat Ben Sadeh
- Department of Biomedical Engineering, Technion-IIT, Haifa 32000, Israel.
| | - Amit Meller
- Department of Biomedical Engineering, Technion-IIT, Haifa 32000, Israel.
| |
Collapse
|
12
|
Nanodevices for Biological and Medical Applications: Development of Single-Molecule Electrical Measurement Method. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A comprehensive detection of a wide variety of diagnostic markers is required for the realization of personalized medicine. As a sensor to realize such personalized medicine, a single molecule electrical measurement method using nanodevices is currently attracting interest for its comprehensive simultaneous detection of various target markers for use in biological and medical application. Single-molecule electrical measurement using nanodevices, such as nanopore, nanogap, or nanopipette devices, has the following features:; high sensitivity, low-cost, high-throughput detection, easy-portability, low-cost availability by mass production technologies, and the possibility of integration of various functions and multiple sensors. In this review, I focus on the medical applications of single- molecule electrical measurement using nanodevices. This review provides information on the current status and future prospects of nanodevice-based single-molecule electrical measurement technology, which is making a full-scale contribution to realizing personalized medicine in the future. Future prospects include some discussion on of the current issues on the expansion of the application requirements for single-mole-cule measurement.
Collapse
|
13
|
Wu LZ, Ye Y, Wang ZX, Ma D, Li L, Xi GH, Bao BQ, Weng LX. Sensitive Detection of Single-Nucleotide Polymorphisms by Solid Nanopores Integrated With DNA Probed Nanoparticles. Front Bioeng Biotechnol 2021; 9:690747. [PMID: 34277589 PMCID: PMC8279778 DOI: 10.3389/fbioe.2021.690747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 12/01/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are the abundant forms of genetic variations, which are closely associated with serious genetic and inherited diseases, even cancers. Here, a novel SNP detection assay has been developed for single-nucleotide discrimination by nanopore sensing platform with DNA probed Au nanoparticles as transport carriers. The SNP of p53 gene mutation in gastric cancer has been successfully detected in the femtomolar concentration by nanopore sensing. The robust biosensing strategy offers a way for solid nanopore sensors integrated with varied nanoparticles to achieve single-nucleotide distinction with high sensitivity and spatial resolution, which promises tremendous potential applications of nanopore sensing for early diagnosis and disease prevention in the near future.
Collapse
Affiliation(s)
- Ling Zhi Wu
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China.,College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yuan Ye
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Zhi Xuan Wang
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Die Ma
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Li Li
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Guo Hao Xi
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bi Qing Bao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Li Xing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
14
|
Burck N, Gilboa T, Gadi A, Nehrer MP, Schneider RJ, Meller A. Nanopore Identification of Single Nucleotide Mutations in Circulating Tumor DNA by Multiplexed Ligation. Clin Chem 2021; 67:753-762. [PMID: 33496315 PMCID: PMC7617058 DOI: 10.1093/clinchem/hvaa328] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Circulating tumor DNAs (ctDNAs) are highly promising cancer biomarkers, potentially applicable for noninvasive liquid biopsy and disease monitoring. However, to date, sequencing of ctDNAs has proven to be challenging primarily due to small sample size and high background of fragmented cell-free DNAs (cfDNAs) derived from normal cells in the circulation, specifically in early stage cancer. METHODS Solid-state nanopores (ssNPs) have recently emerged as a highly efficient tool for single-DNA sensing and analysis. Herein, we present a rapid nanopore genotyping strategy to enable an amplification-free identification and classification of ctDNA mutations. A biochemical ligation detection assay was used for the creation of specific fluorescently-labelled short DNA reporter molecules. Color conjugation with multiple fluorophores enabled a unique multi-color signature for different mutations, offering multiplexing potency. Single-molecule readout of the fluorescent labels was carried out by electro-optical sensing via solid-state nanopores drilled in titanium oxide membranes. RESULTS As proof of concept, we utilized our method to detect the presence of low-quantity ERBB2 F310S and PIK3Ca H1047R breast cancer mutations from both plasmids and xenograft mice blood samples. We demonstrated an ability to distinguish between a wild type and a mutated sample, and between the different mutations in the same sample. CONCLUSIONS Our method can potentially enable rapid and low cost ctDNA analysis that completely circumvents PCR amplification and library preparation. This approach will thus meet a currently unmet demand in terms of sensitivity, multiplexing and cost, opening new avenues for early diagnosis of cancer.
Collapse
Affiliation(s)
- Nitza Burck
- Department of Biomedical Engineering, Technion- IIT, Haifa 32000, Israel
| | - Tal Gilboa
- Department of Biomedical Engineering, Technion- IIT, Haifa 32000, Israel
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Abhilash Gadi
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | | | | | - Amit Meller
- Department of Biomedical Engineering, Technion- IIT, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion- IIT, Haifa 32000, Israel
| |
Collapse
|
15
|
Oh S, Lee MK, Chi SW. Single-Molecule-Based Detection of Conserved Influenza A Virus RNA Promoter Using a Protein Nanopore. ACS Sens 2019; 4:2849-2853. [PMID: 31689087 DOI: 10.1021/acssensors.9b01558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza A viruses (IAVs) cause annual epidemic and severe pandemic outbreaks worldwide and result in high mortality. Despite the importance of surveillance for preventing IAV infection, the existing techniques are inefficient for ultrasensitive diagnosis in real time. In this study, we performed protein nanopore-based measurements to detect the highly conserved IAV RNA promoter at the single-molecule level. The binding of specific DNA probes to the IAV RNA promoter generated two types of characteristic nanopore signatures with single or double spikes of current blockade and substantially increased dwell times, which facilitated the discrimination of the IAV promoter from nonspecific macromolecules. Our DNA probe-mediated nanopore sensor will serve as an ultrasensitive, real-time, point-of-care diagnostic tool for highly pathogenic IAVs.
Collapse
Affiliation(s)
- Sohee Oh
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB school of Biosicence, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB school of Biosicence, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Tian K, Chen X, Luan B, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-enhanced nanopore genetic discrimination of pathogenic serotypes and cancer driver mutations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4492-4495. [PMID: 30441349 DOI: 10.1109/embc.2018.8513177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rapid and accurate detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for broad fields from food safety monitoring to disease diagnostics and prognosis. Here, we developed a nanopore single-molecule sensor, coupled with the locked nucleic acid (LNA) technique, to accurately discriminate SNPs for detection of Shiga toxin producing Escherichia coli (STEC) O157:H7 pathogen serotype, and cancer-derived driver mutations EGFR L858R and KRAS G12D. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, can be applied in food science and medical detection that need rapid and accurate determination of genetic variations.
Collapse
|
17
|
Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. Next-Generation Sequencing in Acute Lymphoblastic Leukemia. Int J Mol Sci 2019; 20:ijms20122929. [PMID: 31208040 PMCID: PMC6627957 DOI: 10.3390/ijms20122929] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and accounts for about a quarter of adult acute leukemias, and features different outcomes depending on the age of onset. Improvements in ALL genomic analysis achieved thanks to the implementation of next-generation sequencing (NGS) have led to the recent discovery of several novel molecular entities and to a deeper understanding of the existing ones. The purpose of our review is to report the most recent discoveries obtained by NGS studies for ALL diagnosis, risk stratification, and treatment planning. We also report the first efforts at NGS use for minimal residual disease (MRD) assessment, and early studies on the application of third generation sequencing in cancer research. Lastly, we consider the need for the integration of NGS analyses in clinical practice for genomic patients profiling from the personalized medicine perspective.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
18
|
Hu YX, Ying YL, Gao R, Yu RJ, Long YT. Characterization of the Dynamic Growth of the Nanobubble within the Confined Glass Nanopore. Anal Chem 2018; 90:12352-12355. [DOI: 10.1021/acs.analchem.8b03923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong-Xu Hu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rui Gao
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ru-Jia Yu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
19
|
Wang Y, Gu LQ, Tian K. The aerolysin nanopore: from peptidomic to genomic applications. NANOSCALE 2018; 10:13857-13866. [PMID: 29998253 PMCID: PMC6157726 DOI: 10.1039/c8nr04255a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aerolysin pore (ARP) is a newly emerging nanopore that has been extensively used for peptide and protein sensing. Recently, several groups have explored the application of ARP in detecting genetic and epigenetic markers. This brief review summarizes the current applications of ARP, progressing from peptidomic to genomic detection; the recently reported site-directed mutagenesis of ARP; and new genomic DNA sensing approaches, and their advantages and disadvantages. This review will also discuss the perspectives and future applications of ARP for nucleic acid sequencing and biomolecule sensing.
Collapse
Affiliation(s)
- Yong Wang
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | - Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
20
|
Design and MinION testing of a nanopore targeted gene sequencing panel for chronic lymphocytic leukemia. Sci Rep 2018; 8:11798. [PMID: 30087429 PMCID: PMC6081477 DOI: 10.1038/s41598-018-30330-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
We report a customized gene panel assay based on multiplex long-PCR followed by third generation sequencing on nanopore technology (MinION), designed to analyze five frequently mutated genes in chronic lymphocytic leukemia (CLL): TP53, NOTCH1, BIRC3, SF3B1 and MYD88. For this purpose, 12 patients were selected according to specific cytogenetic and molecular features significantly associated with their mutational status. In addition, simultaneous analysis of the targets genes was performed by molecular assays or Sanger Sequencing. Data analysis included mapping to the GRCh37 human reference genome, variant calling and annotation, and average sequencing depth/error rate analysis. The sequencing depth resulted on average higher for smaller amplicons, and the final breadth of coverage of the panel was 94.1%. The error rate was about 6% and 2% for insertions/deletions and single nucleotide variants, respectively. Our gene panel allows analysis of the prognostically relevant genes in CLL, with two PCRs per patient. This strategy offers an easy and affordable workflow, although further advances are required to improve the accuracy of the technology and its use in the clinical field. Nevertheless, the rapid and constant development of nanopore technology, in terms of chemistry advances, more accurate basecallers and analysis software, offers promise for a wide use of MinION in the future.
Collapse
|
21
|
Tian K, Chen X, Luan B, Singh P, Yang Z, Gates KS, Lin M, Mustapha A, Gu LQ. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations. ACS NANO 2018; 12:4194-4205. [PMID: 29664612 PMCID: PMC6157732 DOI: 10.1021/acsnano.8b01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.
Collapse
Affiliation(s)
- Kai Tian
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaowei Chen
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Prashant Singh
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Azlin Mustapha
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
22
|
Gu LQ, Gates KS, Wang MX, Li G. What is the potential of nanolock- and nanocross-nanopore technology in cancer diagnosis? Expert Rev Mol Diagn 2017; 18:113-117. [PMID: 29171309 DOI: 10.1080/14737159.2018.1410060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Qun Gu
- a Department of Bioengineering and Dalton Cardiovascular Research Center , University of Missouri , Columbia , MO , USA
| | - Kent S Gates
- b Department of Chemistry and Department of Biochemistry , University of Missouri , Columbia , MO , USA
| | - Michael X Wang
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Guangfu Li
- d Department of Surgery and Ellis Fischel Cancer Center , University of Missouri , Columbia , MO , USA
| |
Collapse
|