1
|
Preechakasedkit P, Pulsrikarn C, Nuanualsuwan S, Rattanadilok Na Phuket N, Citterio D, Ruecha N. Label-Free Detection of Waterborne Pathogens Using an All-Solid-State Laser-Induced Graphene Potentiometric Ion Flux Immunosensor. Anal Chem 2024; 96. [PMID: 39263981 PMCID: PMC11428094 DOI: 10.1021/acs.analchem.4c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Waterborne pathogens are harmful microorganisms transmitted through water sources. Early and rapid pathogen detection is important for preventing illnesses and implementing stringent water safety measures to minimize the risk of contamination. This work introduces a miniaturized all-solid-state potentiometric ion flux immunosensor for the rapid and label-free detection of waterborne pathogens. A screen-printed silver/silver chloride electrode coated with a reference electrode membrane and polyurethane as an all-solid-state reference electrode was combined with a solid-state contact ion-selective electrode (ISE). An all-solid-state ISE was constructed on laser-induced graphene by coating it with a cationic marker and a carboxylated poly(vinyl chloride)-based membrane for immobilizing antibodies and controlling ion fluxes through the membrane. Proof-of-concept was achieved by detecting Escherichia coli and Salmonella enterica serovar Typhimurium using the assembled immunosensors within 10 min. The potentiometric response shift attributed to the blocking effect in the ion flux caused by pathogen-antibody interaction corresponded to pathogen concentration, indicating detection limits of 0.1 CFU/mL and working ranges of 0.1-105 CFU/mL. Furthermore, the developed sensors revealed high selectivity and were directly applied in groundwater and tap water without any sample preparation, demonstrating high recovery percentages. The simple operation and elimination of sample preparation are key benefits to further usability of the developed immunosensors for efficient pathogen detection.
Collapse
Affiliation(s)
- Pattarachaya Preechakasedkit
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
| | - Chaiwat Pulsrikarn
- National
Institute of Health, Department of Medical Science, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Suphachai Nuanualsuwan
- Department
of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Daniel Citterio
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Nipapan Ruecha
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Wang J, Zhou H, Liang R, Qin W. Chronopotentiometric Nanopore Sensor Based on a Stimulus-Responsive Molecularly Imprinted Polymer for Label-Free Dual-Biomarker Detection. Anal Chem 2024; 96:9370-9378. [PMID: 38683892 DOI: 10.1021/acs.analchem.3c05817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The development of sensors for detection of biomarkers exhibits an exciting potential in diagnosis of diseases. Herein, we propose a novel electrochemical sensing strategy for label-free dual-biomarker detection, which is based on the combination of stimulus-responsive molecularly imprinted polymer (MIP)-modified nanopores and a polymeric membrane chronopotentiometric sensor. The ion fluxes galvanostatically imposed on the sensing membrane surface can be blocked by the recognition reaction between the target biomarker in the sample solution and the stimulus-responsive MIP receptor in the nanopores, thus causing a potential change. By using two external stimuli (i.e., pH and temperature), the recognition abilities of the stimulus-responsive MIP receptor can be effectively modulated so that dual-biomarker label-free chronopotentiometric detection can be achieved. Using alpha fetoprotein (AFP) and prostate-specific antigen (PSA) as model biomarkers, the proposed sensor offers detection limits of 0.17 and 0.42 ng/mL for AFP and PSA, respectively.
Collapse
Affiliation(s)
- Junhao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Zhou
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264099, China
| | - Rongning Liang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
3
|
Mostafa MM, Sedik GA, Elzanfaly ES, Nadim AH. Development of potentiometric immunosensor for determination of live attenuated Varicella Vaccine: Potency and stability studies. Anal Biochem 2023; 683:115367. [PMID: 39492542 DOI: 10.1016/j.ab.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
Determination of Varicella vaccine's potency; containing live attenuated strain (Oka) of Varicella Zoster virus, has been limited to in vitro cell culture methods. In this study, a label free potentiometric biosensor has been developed for the first time and optimized to determine the content of varicella zoster virus. A passive ion-flux sensing platform has been developed using an anti-varicella monoclonal antibody and tetrabutyl ammonium bromide as a marker ion. The immunosensor has been optimized with respect to membrane diameter and concentration of the immobilized antibody. Linearity was achieved over a concentration range of 2.5-3.2 log PFU/dose with a LOD of 1.9 log PFU/dose. Potentiometric results were compared to the plaque-forming assay using the cell culture technique. The developed immunosensor was superior with respect to analysis time and cost without affecting critical analytical performance characteristics. Furthermore, in order to evaluate the stability indicating ability of the immunosensor, the effect of pH and temperature was investigated. Vaccine samples were subjected to forced degradation conditions; pH and elevated temperatures. Stability results showed the ability of immunosensor to differentiate between intact and degraded viral content. This would demonstrate the reliability of the immunosensor for evaluating the efficacy and stability of the vaccine.
Collapse
Affiliation(s)
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Eman S Elzanfaly
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Egypt
| | - Ahmed H Nadim
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
4
|
Saad MA, Eissa NM, Ahmed MA, ElMeshad AN, Laible G, Attia AS, Al-Ghobashy MA, Abdelsalam RM, Al-Shorbagy MY. Nanoformulated Recombinant Human Myelin Basic Protein and Rituximab Modulate Neuronal Perturbations in Experimental Autoimmune Encephalomyelitis in Mice. Int J Nanomedicine 2022; 17:3967-3987. [PMID: 36105617 PMCID: PMC9464642 DOI: 10.2147/ijn.s359114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Rituximab (RTX) and recombinant human myelin basic protein (rhMBP) were proven to be effective in ameliorating the symptoms of multiple sclerosis (MS). In this study, a nanoformulation containing rhMBP with RTX on its surface (Nano-rhMBP-RTX) was prepared and investigated in comparison with other treatment groups to determine its potential neuro-protective effects on C57BL/6 mice after inducing experimental autoimmune encephalomyelitis (EAE). Methods EAE was induced in the corresponding mice by injecting 100 μL of an emulsion containing complete Freund's adjuvant (CFA) and myelin oligodendrocyte glycoprotein (MOG). The subjects were weighed, scored and subjected to behavioural tests. After reaching a clinical score of 3, various treatments were given to corresponding EAE-induced and non-induced groups including rhMBP, RTX, empty nanoparticle prepared by poly (lactide-co-glycolide) (PLGA) or the prepared nanoformulation (Nano-rhMBP-RTX). At the end of the study, biochemical parameters were also determined as interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-10 (IL-10), interleukin-4 (IL-4), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-kB), brain derived neurotrophic factor (BDNF), 2', 3' cyclic nucleotide 3' phosphodiesterase (CNP) and transforming growth factor beta (TGF-β) along with some histopathological analyses. Results The results of the Nano-rhMBP-RTX group showed promising outcomes in terms of reducing the clinical scores, improving the behavioural responses associated with improved histopathological findings. Elevation in the levels of IL-4, CNP and TGF-β was also noticed along with marked decline in the levels of NF-kB and TNF-α. Conclusion Nano-rhMBP-RTX treated group ameliorated the adverse effects induced in the EAE model. The effectiveness of this formulation was demonstrated by the normalization of EAE-induced behavioral changes and aberrant levels of specific biochemical markers as well as reduced damage of hippocampal tissues and retaining higher levels of myelination.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Noha M Eissa
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mohammed A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aliaa N ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Giza, Egypt
| | - Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand.,School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Bioanalysis Research Group, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,School of Pharmacy, Newgiza University, Giza, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
5
|
Li L, Liang D, Guo W, Tang D, Zeng Y. New Insights on Potentiometric Immunosensor at Carbon Fiber Microelectrode for Alpha‐Fetoprotein in Hepatocellular Carcinoma. ELECTROANAL 2022; 34:976-980. [DOI: 10.1002/elan.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 11/11/2022]
Abstract
AbstractHerein, we investigated the analytical features of potentiometric immunosensors for detection of alpha‐fetoprotein (AFP) in hepatocellular carcinoma at different electrodes, such as carbon fiber microelectrode (CFME) and carbon‐disk electrode (CDE), respectively. To construct such an immunosensor, anti‐AFP capture antibodies were first conjugated covalently onto the activated electrodes through typical carbodiimide coupling. Thereafter, one‐step immunoreaction protocol was successfully introduced to develop a new potentiometric immunoassay upon addition of AFP. Accompanying the antigen‐antibody reaction, the surface charges of the modified electrodes were changed for the readout of electric potential. Results indicated that the linear range of CDE‐based immunosensor was 0.1–100 ng mL−1 AFP, whereas the assay sensitivity by using CFME could be further increased to 3.2 pg mL−1 with the linear range from 0.01 to 500 ng mL−1 AFP. Meanwhile, CFME‐based immunosensor showed high sensitivity, good reproducibility and specificity, and could be utilized for the analysis of human serum specimens with consistent results relative to commercialized ELISA kit.
Collapse
Affiliation(s)
- Ling Li
- The First Clinical Medical College of Fujian Medical University Fuzhou 350004 P. R. China
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Hepatopancreatobiliary Surgery Department The First Affiliated Hospital of Fujian Medical University Fuzhou 350004 P. R. China
| | - Dong Liang
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- People's Hospital Affiliated of Fujian University of Traditional Chinese Medicine Fuzhou 350004 P. R. China
| | - Wuhua Guo
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
| | - Dianping Tang
- Department of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Yongyi Zeng
- The First Clinical Medical College of Fujian Medical University Fuzhou 350004 P. R. China
- Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 P. R. China
- Hepatopancreatobiliary Surgery Department The First Affiliated Hospital of Fujian Medical University Fuzhou 350004 P. R. China
| |
Collapse
|
6
|
|
7
|
Walker NL, Roshkolaeva AB, Chapoval AI, Dick JE. Recent Advances in Potentiometric Biosensing. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 28:100735. [PMID: 34056144 PMCID: PMC8162913 DOI: 10.1016/j.coelec.2021.100735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Potentiometric biosensors are incredibly versatile tools with budding uses in industry, security, environmental safety, and human health. This mini-review on recent (2018-2020) advances in the field of potentiometric biosensors is intended to give a general overview of the main types of potentiometric biosensors for novices while still providing a brief but thorough summary of the novel advances and trends for experienced practitioners. These trends include the incorporation of nanomaterials, graphene, and novel immobilization materials, as well as a strong push towards miniaturized, flexible, and self-powered devices for in-field or at-home use.
Collapse
Affiliation(s)
- Nicole L Walker
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Andrei I Chapoval
- Russian-American Anti-Cancer Center, Altai State University, Barnaul, 656049, Russia
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Nadim AH, Abd El-Aal MA, Al-Ghobashy MA, El-Saharty YS. Optimization of polydopamine imprinted polymer for label free sensitive potentiometric determination of proteins: Application to recombinant human erythropoietin sensing in different matrices. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Nadim AH, Abd El-Aal MA, Al-Ghobashy MA, El-Saharty YS. Facile imprinted polymer for label-free highly selective potentiometric sensing of proteins: case of recombinant human erythropoietin. Anal Bioanal Chem 2021; 413:3611-3623. [PMID: 33866391 DOI: 10.1007/s00216-021-03325-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
In the current study, a molecularly imprinted polymer (MIP)-based potentiometric sensor was fabricated for a label-free determination of recombinant human erythropoietin (rhEPO). The MIP sensor was operated under zero current conditions using tetra-butyl ammonium bromide as a marker ion. A highly ordered rhEPO surface imprinted layer was prepared using 3-aminopropyl triethoxysilane and tetraethoxysilane as a monomer and cross-linker, respectively, under mild reaction conditions. A two-fold increase in the signal output was obtained by polymeric surface minimization (0.5 mm) that allowed more pronounced molecular recognition (imprinting factor = 20.1). The proportion of cross-reactivity was examined using different interfering biomolecules. Results confirmed sensor specificity for both structurally related and unrelated proteins. An ~40% decrease in the response was obtained for rhEPO-β compared to rhEPO-α. The imprinted polymeric surface was evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. Under the optimal measurement conditions, a linear range of 10.00-1000.00 ng mL-1 (10-10 - 10-8 M) was obtained. The sensor was employed for the determination of rhEPO in different biopharmaceutical formulations. Results were validated against standard immunoassay. Spiked human serum samples were analyzed and the assay was validated. The presence of non-specific proteins did not significantly affect (~8%) the results of our assay. A concentration-dependent linear response was produced in an identical range with detection limit as low as 6.50 ng mL-1 (2.14 × 10-10 M). The facile fabricated MIP sensor offers a cost-effective, portable, and easy to use alternative for biosimilarity assessment and clinical application.
Collapse
Affiliation(s)
- Ahmed H Nadim
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - May A Abd El-Aal
- National Organization for Research and Control of Biologicals, 51 Wezaret El-Zeraa St., Dokki, Giza, 354, Egypt
| | - Medhat A Al-Ghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt. .,Bioanalysis Research Group, School of Pharmacy, New Giza University, Km 22 Cairo-Alex road, Giza, 12563, Egypt.
| | - Yasser S El-Saharty
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
10
|
Affiliation(s)
- Elena Zdrachek
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
11
|
Liu S, Ding J, Qin W. Chronopotentiometric aptasensing with signal amplification based on enzyme-catalyzed surface polymerization. Chem Commun (Camb) 2020; 56:13355-13358. [PMID: 33030188 DOI: 10.1039/d0cc05745b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A signal amplification strategy based on the horseradish peroxidase catalyzed polymerization of dopamine on a polymeric ion-selective membrane surface is proposed for the sensitive chronopotentiometric detection of an aptamer-target binding event.
Collapse
Affiliation(s)
- Shuwen Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, P. R. China.
| | | | | |
Collapse
|
12
|
Ni E, Fang Y, Ma F, Ge G, Wu J, Wang Y, Lin Y, Xie H. A one-step potentiometric immunoassay for plasma cardiac troponin I using an antibody-functionalized bis-MPA-COOH dendrimer as a competitor with improved sensitivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2914-2921. [PMID: 32930214 DOI: 10.1039/d0ay00680g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we have reported a new one-step potentiometric immunoassay for the sensitive and specific detection of human plasma cardiac troponin I (cTnI), a biomarker of cardio-cerebrovascular diseases. Initially, the cTnI biomolecules were immobilized on the surface of a gold nanoparticle-functionalized screen-printed graphite electrode (SPGE). Thereafter, rabbit polyclonal antibodies to cTnI were covalently conjugated to the bis-MPA-COOH dendrimers through typical carbodiimide coupling. The introduction of the target analyte caused a competitive immunoreaction between the immobilized cTnI on the electrode and the conjugated antibody on the dendrimers. The potentiometric measurement was mainly derived from the change in the surface charge on the surface of the modified electrode due to the negatively charged bis-MPA-COOH dendrimers after the immunoreaction. On increasing target cTcI, the number of charged dendrimers on the immunosensor decreased, resulting in a change in the electric potential. Under optimum conditions, the potentiometric immunosensor exhibited good potentiometric responses for the detection of cTcI and allowed the determination of the target analyte at a concentration as low as 7.3 pg mL-1. An intermediate precision of ≤8.7% was accomplished with batch-to-batch identification. Meanwhile, the potentiometric immunosensor showed good anti-interfering capacity and selectivity against other proteins and biomarkers. Importantly, our system displayed high accuracy for the analysis of human plasma serum samples containing target cTcI relative to commercial human cTcI enzyme-linked immunosorbent assay (ELISA) kits.
Collapse
Affiliation(s)
- Erru Ni
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Yizhen Fang
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Fangfang Ma
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Gaoshun Ge
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Jingyi Wu
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Yingying Wang
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Huabin Xie
- Clinical Laboratory Department, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen City, Fujian Province, China.
- Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen City, Fujian Province, China
| |
Collapse
|
13
|
|