1
|
Sailor MJ. The Future of Engineered Living Sensors ─ I Hope It Is Not the Thing with Feathers. ACS Sens 2022; 7:2795-2796. [DOI: 10.1021/acssensors.2c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Liang Z, Zhang S, Wu J, Li X, Zhuang Z, Feng Q, Chen W, Qi L. Automatic 3-D segmentation and volumetric light fluence correction for photoacoustic tomography based on optimal 3-D graph search. Med Image Anal 2021; 75:102275. [PMID: 34800786 DOI: 10.1016/j.media.2021.102275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/29/2023]
Abstract
Preclinical imaging with photoacoustic tomography (PAT) has attracted wide attention in recent years since it is capable of providing molecular contrast with deep imaging depth. The automatic extraction and segmentation of the animal in PAT images is crucial for improving image analysis efficiency and enabling advanced image post-processing, such as light fluence (LF) correction for quantitative PAT imaging. Previous automatic segmentation methods are mostly two-dimensional approaches, which failed to conserve the 3-D surface continuity because the image slices were processed separately. This discontinuity problem further hampers LF correction, which, ideally, should be carried out in 3-D due to spatially diffused illumination. Here, to solve these problems, we propose a volumetric auto-segmentation method for small animal PAT imaging based on the 3-D optimal graph search (3-D GS) algorithm. The 3-D GS algorithm takes into account the relation among image slices by constructing a 3-D node-weighted directed graph, and thus ensures surface continuity. In view of the characteristics of PAT images, we improve the original 3-D GS algorithm on graph construction, solution guidance and cost assignment, such that the accuracy and smoothness of the segmented animal surface were guaranteed. We tested the performance of the proposed method by conducting in vivo nude mice imaging experiments with a commercial preclinical cross-sectional PAT system. The results showed that our method successfully retained the continuous global surface structure of the whole 3-D animal body, as well as smooth local subcutaneous tumor boundaries at different development stages. Moreover, based on the 3-D segmentation result, we were able to simulate volumetric LF distribution of the entire animal body and obtained LF corrected PAT images with enhanced structural visibility and uniform image intensity.
Collapse
Affiliation(s)
- Zhichao Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Jian Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Xipan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Zhijian Zhuang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
4
|
Jiang D, Sheng K, Gui G, Jiang H, Liu X, Wang L. A novel smartphone-based electrochemical cell sensor for evaluating the toxicity of heavy metal ions Cd 2+, Hg 2+, and Pb 2+ in rice. Anal Bioanal Chem 2021; 413:4277-4287. [PMID: 34057556 DOI: 10.1007/s00216-021-03379-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
A novel smartphone-based electrochemical cell sensor was developed to evaluate the toxicity of heavy metal ions, such as cadmium (Cd2+), lead (Pb2+), and mercury (Hg2+) ions on Hep G2 cells. The cell sensor was fabricated with reduced graphene oxide (RGO)/molybdenum sulfide (MoS2) composites to greatly improve the biological adaptability and amplify the electrochemical signals. Differential pulse voltammetry (DPV) was employed to measure the electrical signals induced by the toxicity of heavy metal ions. The results showed that Cd2+, Hg2+, and Pb2+ significantly reduced the viability of Hep G2 cells in a dose-dependent manner. The IC50 values obtained by this method were 49.83, 36.94, and 733.90 μM, respectively. A synergistic effect was observed between Cd2+ and Pb2+ and between Hg2+ and Pb2+, and an antagonistic effect was observed between Cd2+ and Hg2+, and an antagonistic effect at low doses and an additive effect at high doses were found in the ternary mixtures of Cd2+, Hg2+, and Pb2+. These electrochemical results were confirmed via MTT assay, SEM and TEM observation, and flow cytometry. Therefore, this new electrochemical cell sensor provided a more convenient, sensitive, and flexible toxicity assessment strategy than traditional cytotoxicity assessment methods.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Kaikai Sheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Guoyue Gui
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, Jiangsu, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing, 211198, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
5
|
Farhadi A, Sigmund F, Westmeyer GG, Shapiro MG. Genetically encodable materials for non-invasive biological imaging. NATURE MATERIALS 2021; 20:585-592. [PMID: 33526879 PMCID: PMC8606175 DOI: 10.1038/s41563-020-00883-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/18/2020] [Indexed: 05/04/2023]
Abstract
Many questions in basic biology and medicine require the ability to visualize the function of specific cells and molecules inside living organisms. In this context, technologies such as ultrasound, optoacoustics and magnetic resonance provide non-invasive imaging access to deep-tissue regions, as used in many laboratories and clinics to visualize anatomy and physiology. In addition, recent work has enabled these technologies to image the location and function of specific cells and molecules inside the body by coupling the physics of sound waves, nuclear spins and light absorption to unique protein-based materials. These materials, which include air-filled gas vesicles, capsid-like nanocompartments, pigment-producing enzymes and transmembrane transporters, enable new forms of biomolecular and cellular contrast. The ability of these protein-based contrast agents to be genetically encoded and produced by cells creates opportunities for unprecedented in vivo studies of cellular function, while their amenability to genetic engineering enables atomic-level design of their physical, chemical and biological properties.
Collapse
Affiliation(s)
- Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felix Sigmund
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Institute for Synthetic Biomedicine, Helmholtz Zentrum Muenchen, Neuherberg, Germany.
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Nielsen CDT, Dhasmana D, Floresta G, Wohland T, Cilibrizzi A. Illuminating the Path to Target GPCR Structures and Functions. Biochemistry 2020; 59:3783-3795. [PMID: 32956586 DOI: 10.1021/acs.biochem.0c00606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) are ubiquitous within eukaryotes, responsible for a wide array of physiological and pathological processes. Indeed, the fact that they are the most drugged target in the human genome is indicative of their importance. Despite the clear interest in GPCRs, most information regarding their activity has been so far obtained by analyzing the response from a "bulk medium". As such, this Perspective summarizes some of the common methods for this indirect observation. Nonetheless, by inspecting approaches applying super-resolution imaging, we argue that imaging is perfectly situated to obtain more detailed structural and spatial information, assisting in the development of new GPCR-targeted drugs and clinical strategies. The benefits of direct optical visualization of GPCRs are analyzed in the context of potential future directions in the field.
Collapse
Affiliation(s)
- Christian D-T Nielsen
- Imperial College London, White City Campus, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, U.K
| | - Divya Dhasmana
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Giuseppe Floresta
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| |
Collapse
|