1
|
Ma N, Wang S, Liu M, Zhu H, Liu Q, Kong J, Zhang T. Controllable radical polymerization of TEMPO redox for stable and sensitive enzyme electrode interface. Biosens Bioelectron 2024; 259:116417. [PMID: 38795496 DOI: 10.1016/j.bios.2024.116417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Assembling functional molecules on the surface of an enzyme electrode is the most basic technique for constructing a biosensor. However, precise control of electron transfer interface or electron mediator on the electrode surface remains a challenge, which is a key step that affects the stability and sensitivity of enzyme-based biosensors. In this study, we propose the use of controllable free radical polymerization to grow stable 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) polymer as electron mediator on enzyme surface for the first time. Through scanning electron microscopy (SEM), Raman spectroscopy, electrode surface coverage measurement, static contact angle (SCA), and a series of electrochemical methods, it has been demonstrated that the TEMPO-based enzyme electrode exhibits a uniform hydrophilic morphology and stable electrochemical performance. Furthermore, the results show that the sensor demonstrates high sensitivity for detecting glucose biomolecules in artificial sweat and serum. Attributing to the quantitative and controllable radical polymerization of TEMPO redox assembled enzyme electrode surface, the as-proposed biosensor providing a use, storage, and inter-batch sensing stability, providing a vital platform for wearable/implantable biochemical sensors.
Collapse
Affiliation(s)
- Nan Ma
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, PR China; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, Jiangsu, 210094, PR China
| | - Shuqi Wang
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, PR China.
| | - Mengyuan Liu
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, PR China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China
| | - Hao Zhu
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, PR China
| | - Qianzuo Liu
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, Jiangsu, 210094, PR China.
| | - Ting Zhang
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu 215123, PR China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, PR China; Nano-X Vacuum Interconnected Workstation, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
2
|
Dou B, Wang K, Chen Y, Wang P. Programmable DNA Nanomachine Integrated with Electrochemically Controlled Atom Transfer Radical Polymerization for Antibody Detection at Picomolar Level. Anal Chem 2024; 96:10594-10600. [PMID: 38904276 DOI: 10.1021/acs.analchem.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The quantitative detection of antibodies is crucial for the diagnosis of infectious and autoimmune diseases, while the traditional methods experience high background signal noise and restricted signal gain. In this work, we have developed a highly efficient electrochemical biosensor by constructing a programmable DNA nanomachine integrated with electrochemically controlled atom transfer radical polymerization (eATRP). The sensor works by binding the target antidigoxin antibody (anti-Dig) to the epitope of the recognization probe, which then initiates the cascaded strand displacement reaction on a magnetic bead, leading to the capture of cupric oxide (CuO) nanoparticles through magnetic separation. After CuO was dissolved, the eATRP initiators were attached to the electrode based on the CuΙ-catalyzed azide-alkyne cycloaddition. The subsequent eATRP reaction results in the formation of long electroactive polymers (poly-FcMMA), producing an amplified current response for sensitive detection of anti-Dig. This method achieved a detection limit at clinically relevant picomolar concentration in human serum, offering a sensitive, convenient, and cost-effective tool for detecting various biomarkers in a wide range of applications.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Keming Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
3
|
Zhou S, Guo L, Shi X, Ma L, Yang H, Miao M. In situ synthesized eRAFT polymers for highly sensitive electrochemical determination of AFB 1 in foods and herbs. Food Chem 2023; 421:136176. [PMID: 37098309 DOI: 10.1016/j.foodchem.2023.136176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
An electrochemical sensor based on environmentally friendly eRAFT polymerization was developed for the detection of aflatoxin B1 (AFB1) in food and herbal medicine. Two biological probes, aptamer (Ap) and antibody (Ab), were used to specifically recognize AFB1, and a large number of ferrocene polymers were grafted on the electrode surface by eRAFT polymerization, which greatly improved the specificity and sensitivity of the sensor. The detection limit of AFB1 was 37.34 fg/mL. In addition, the recovery rate was 95.69% to 107.65% and the RSD was 0.84% to 4.92% by detecting 9 spiked samples. The delighted reliability of this method was verified by HPLC-FL.
Collapse
Affiliation(s)
- Shijin Zhou
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Xinheng Shi
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Lele Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Zhao S, Xu Z, Qiao X, Li M, Li Y, Luo X. Peptide nucleic acid and antifouling peptide based biosensor for the non-fouling detection of COVID-19 nucleic acid in saliva. Biosens Bioelectron 2023; 225:115101. [PMID: 36708624 DOI: 10.1016/j.bios.2023.115101] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The electrochemical biosensor with outstanding sensitivity and low cost is regarded as a viable alternative to current clinical diagnostic techniques for various disease biomarkers. However, their actual analytical use in complex biological samples is severely hampered due to the biofouling, as they are also highly sensitive to nonspecific adsorption on the sensing interfaces. Herein, we have constructed a non-fouling electrochemical biosensor based on antifouling peptides and the electroneutral peptide nucleic acid (PNA), which was used as the recognizing probe for the specific binding of the viral RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Different from the negatively charged DNA probes that will normally weaken the biosensors' antifouling capabilities owing to the charge attraction of positively charged biomolecules, the neutral PNA probe will generate no side-effects on the biosensor. The biosensor demonstrated remarkable sensitivity in detecting SARS-CoV-2 viral RNA, possessing a broad linear range (1.0 fM - 1.0 nM) and a detection limit down to 0.38 fM. Furthermore, the sensing performance of the constructed electrochemical biosensor in human saliva was nearly similar to that in pure buffer, indicating satisfying antifouling capability. The combination of PNA probes with antifouling peptides offered a new strategy for the development of non-fouling sensing systems capable of assaying trace disease biomarkers in complicated biological media.
Collapse
Affiliation(s)
- Yanxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Shuju Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhenying Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Mingxuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Youke Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
5
|
Ma N, Liu J, Liu B, Li L, Kong J, Zhang X. Coenzyme-catalyzed electroinitiated reversible addition fragmentation chain transfer polymerization for ultrasensitive electrochemical DNA detection. Talanta 2022; 236:122840. [PMID: 34635230 DOI: 10.1016/j.talanta.2021.122840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Ultrasensitive detection of biomarkers at an early stage is generally limited by external influence factors such as high reaction temperature, complex operations, and sophisticated instruments. Here, we circumvent these problems by using nicotinamide adenine dinucleotide (NAD+) to control electroinitiated reversible addition fragmentation chain transfer (electro-RAFT) polymerization for biosensing that enables the detection of a few molecules of target DNA. In this coenzyme-catalyzed electro-RAFT polymerization, numerous ferrocenylmethyl methacrylate (FCMMA) as monomer with electrochemistry signal were linked to the biomarker on Au electrode. Afterwards, a strong oxidation peak appears at the potential of about 0.3 V that represents a typical oxidation potential of FCMMA. The sensitivity of this methodology was presented by detecting DNA from 10-1 to 104 fM concentration and detection limit (LOD) being down to 4.39 aM in 10 μL samples. This is lower by factors than detection limits of most other ultra-sensitive electrochemical DNA assays.
Collapse
Affiliation(s)
- Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, 211171, PR China
| | - Bang Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
6
|
Ding J, Zhou Y, Wang Q, Ai S. Photoelectrochemical biosensor for DNA hydroxymethylation detection based on the enhanced photoactivity of in-situ synthesized Bi 4NbO 8Cl@Bi 2S 3 heterojunction. Biosens Bioelectron 2021; 194:113580. [PMID: 34454344 DOI: 10.1016/j.bios.2021.113580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
As an important epigenetic modification, 5-hydroxymethylcytosine (5hmC) aroused wide concern about the distribution and the function. Due to the necessity of 5hmC detection, a novel photoelectrochemical (PEC) biosensor was established based on the in-situ generated heterojunction of Bi4NbO8Cl@Bi2S3, which was employed as the substrate material with excellent photoelectric property. The specific recognition of 5hmC relied on the covalent reaction between -CH2OH of 5hmC and -SH on the substrate electrode under the catalysis of M.HhaI methyltransferase. Afterwards, ZrO2 was used as signal amplification unit capturing by the specific reaction of Zr with the phosphate group of 5hmC. The experimental results demonstrated well specificity and sensitivity of this biosensor. Under optimal conditions, the linear relationship between the photocurrent and the logarithm value of 5hmC concentration was constructed with the range from 0.3 to 300 nM and the detection limit of 0.0779 nM (S/N = 3). The procedures of constructing this biosensor were compact and convenient, and this biosensor realized actual detection of 5hmC level in wheat sample. Significantly, this biosensor was applied to a preliminary study that the heavy metal Pb2+ and the perfluorooctanoic acid influence the expression of 5hmC in the genomic DNA of wheat seedling roots and leaves.
Collapse
Affiliation(s)
- Jia Ding
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China.
| | - Qian Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, 271018, Taian, Shandong, PR China
| |
Collapse
|
7
|
Li P, Zhang Y, Gong P, Liu Y, Feng W, Yang H. Photoinduced atom transfer radical polymerization combined with click chemistry for highly sensitive detection of tobacco mosaic virus RNA. Talanta 2021; 235:122803. [PMID: 34517661 DOI: 10.1016/j.talanta.2021.122803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
An electrochemical biosensor for highly sensitive detection of tobacco mosaic virus (TMV) RNA (tRNA) based on click chemistry and photoinduced atom transfer radical polymerization (photoATRP) is developed for the first time. Herein, tRNA is recognized and captured by hairpin DNA immobilized on the gold electrode surface by Au-S self-assembly. Propyl 2-bromoisobutyrate (PBIB), a photoATRP initiator containing an alkyne group, is conjugated to the azide group of hairpin DNA via a Cu(I)-catalyzed azidoalkyl cyclization reaction (CuAAC). Under the irradiation of 470 nm blue light, photoATRP is activated by the photoredox catalyst (eosin Y, EY), resulting in the formation of a large number of electroactive probes (ferrocenylmethyl methacrylate, FMMA), which significantly amplifies the signal. Under the optimal experimental parameters, the strategy has a wide linear detection (0.1 pM-10 nM) (R2 = 0.995) with a limit of detection (LOD) as low as 3.5 fM. In addition, the biosensor also exhibited good selectivity for mismatched bases, excellent stability and reproducibility. Moreover, satisfactory result was achieved when the biosensor was applied to the detection of tRNA from healthy rehmannia total RNA extracts, which demonstrates the great potential of the method in the practical detection of TMV.
Collapse
Affiliation(s)
- Peipei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yaping Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pengfei Gong
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Weisheng Feng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
8
|
Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50:13012-13089. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detecting the ultra-low abundance of analytes in real-life samples, such as biological fluids, water, soil, and food, requires the design and development of high-performance biosensing modalities. The breakthrough efforts from the scientific community have led to the realization of sensing technologies that measure the analyte's ultra-trace level, with relevant sensitivity, selectivity, response time, and sampling efficiency, referred to as Attomolar Analyte Sensing Techniques (AttoSens) in this review. In an AttoSens platform, 1 aM detection corresponds to the quantification of 60 target analyte molecules in 100 μL of sample volume. Herein, we review the approaches listed for various sensor probe design, and their sensing strategies that paved the way for the detection of attomolar (aM: 10-18 M) concentration of analytes. A summary of the technological advances made by the diverse AttoSens trends from the past decade is presented.
Collapse
Affiliation(s)
- Sruthi Prasood Usha
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Hariharan Manoharan
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Rehan Deshmukh
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - Enric Calucho
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain.
| | - V V R Sai
- Biomedical Engineering, Department of Applied Mechanics, Indian Institute of Technology Madras (IITM), India.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, Barcelona, Spain. .,ICREA, Institució Catalana de Recercai Estudis Avançats, Barcelona, Spain
| |
Collapse
|
9
|
Zhang J, Hou M, Chen G, Mao H, Chen W, Wang W, Chen J. An electrochemical biosensor based on DNA “nano-bridge” for amplified detection of exosomal microRNAs. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Cao Y, Zheng Z, Monbouquette HG. Nucleic acid amplification-free detection of DNA and RNA at ultralow concentration. Curr Opin Biotechnol 2021; 71:145-150. [PMID: 34375812 DOI: 10.1016/j.copbio.2021.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 02/04/2023]
Abstract
The broad spectrum of approaches for nucleic acid amplification-free detection of DNA and RNA at single-digit attomolar (10-18 M) concentration and lower is reviewed. These low concentrations correspond roughly to the most clinically desirable detection range for pathogen-specific nucleic acid as well as the detection limits of commercially available, nucleic acid amplification tests based primarily on polymerase chain reaction (PCR). The need for more rapid and inexpensive, yet still highly accurate tests, has become evident during the pandemic. It is expected that publication of reports describing improved tests will accelerate soon, and this review covers the wide variety of detection methods based on both optical and electrical measurements that have been conceived over recent years, enabled generally by the advent of nanotechnology.
Collapse
Affiliation(s)
- Yan Cao
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenrong Zheng
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Harold G Monbouquette
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Sun H, Kong J, Zhang X. Application of peptide nucleic acid in electrochemical nucleic acid biosensors. Biopolymers 2021; 112:e23464. [PMID: 34214202 DOI: 10.1002/bip.23464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023]
Abstract
The early diagnosis of major diseases, such as malignant tumors, has always been an important field of research. Through screening, early detection of such diseases, and timely and effective treatment can significantly improve the survival rate of patients and reduce medical costs. Therefore, the development of a simple detection method with high sensitivity and strong specificity, and that is low cost is of great significance for the diagnosis and prognosis of the disease. Electrochemical DNA biosensing analysis is a technology based on Watson Crick base complementary pairing, which uses the capture probe of a known sequence to specifically recognize the target DNA and detect its concentration. Because of its advantages of low cost, simple operation, portability, and easy miniaturization, it has been widely researched and has become a cutting-edge topic in the field of biochemical analysis and precision medicine. However, the existing methods for electrochemical DNA biosensing analysis have some shortcomings, such as poor stability and specificity of capture probes, insufficient detection sensitivity, and long detection cycles. In this review, we focus on improving the sensitivity and practicability of electrochemical DNA biosensing analysis methods and summarize a series of research work carried out by using electrically neutral peptide nucleic acid as an immobilized capture probe.
Collapse
Affiliation(s)
- Haobo Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.,School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
12
|
Hu Q, Su L, Mao Y, Gan S, Bao Y, Qin D, Wang W, Zhang Y, Niu L. Electrochemically induced grafting of ferrocenyl polymers for ultrasensitive cleavage-based interrogation of matrix metalloproteinase activity. Biosens Bioelectron 2021; 178:113010. [DOI: 10.1016/j.bios.2021.113010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
|
13
|
Wang Y, Song W, Zhao H, Ma X, Yang S, Qiao X, Sheng Q, Yue T. DNA walker-assisted aptasensor for highly sensitive determination of Ochratoxin A. Biosens Bioelectron 2021; 182:113171. [PMID: 33773380 DOI: 10.1016/j.bios.2021.113171] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
Ochratoxin A (OTA), a toxic secondary metabolite produced via various fungus, poses a serious threat to the health of human beings and animals. In this paper, an aptasensor for OTA detection based on gold nanoparticles decorated molybdenum oxide (AuNPs-MoOx) nanocomposites, hybridization chain reaction (HCR) and a restriction endonuclease (Nb.BbvCI)-aided walker DNA machine was successfully constructed. In this electrochemical platform, the HCR was also used to embed more electrical signal molecules of methylene blue (MB) on silver nanoparticles (AgNPs) to achieve signal amplification. Under the optimum conditions, after adding OTA and Nb.BbvCI in turn and responding adequately under appropriate conditions, aptamer-DNA (6-DNA) carries the OTA away from the electrode surface, and walker DNA was hybridized autonomously with 5-DNA, releasing a large amount of 5'-DNA with the help of Nb.BBVCI. Finally, the electrochemical signal obtained by differential pulse voltammetry (DPV) was weakened. As an artificial and popular signal amplification technique, the DNA walking machine greatly improved the sensitivity. The proposed biosensor exhibited excellent analytical performance in the range of 0.01-10000 pg mL-1 with a detection limit as low as 3.3 fg mL-1. Furthermore, direct comparison with ultraperformance liquid chromatography (UPLC) indicates excellent agreement to actual samples such as apple juice, orange juice, red wine and serum.
Collapse
Affiliation(s)
- Yahui Wang
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Haiyan Zhao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Xin Ma
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Shuying Yang
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| | - Xiujuan Qiao
- College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China; College of Chemistry & Materials Science/Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
14
|
Abstract
The preparation and applications of DNA containing polymers are comprehensively reviewed, and they are in the form of DNA−polymer covalent conjugators, supramolecular assemblies and hydrogels for advanced materials with promising features.
Collapse
Affiliation(s)
- Zeqi Min
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Biyi Xu
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Wen Li
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| | - Afang Zhang
- School of Materials Science & Engineering
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
15
|
Ma L, Liu Q, Jian L, Ye S, Zheng X, Kong J. Intramolecular photoinitiator induced atom transfer radical polymerization for electrochemical DNA detection. Analyst 2020; 145:858-864. [PMID: 31845653 DOI: 10.1039/c9an02018g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel electrochemical biosensor was reported for the first time to achieve highly sensitive DNA detection based on photoinduced atom transfer radical polymerization (photoATRP). In this work, PNA was applied as the capture probe to specifically recognize the target DNA (TDNA), and we utilized lung cancer DNA as TDNA. The ATRP initiator was introduced to the electrode surface via phosphate-Zr4+-carboxylate chemistry. PhotoATRP was activated under blue light irradiation based on a photoinitiator I2959, which produced free radicals via homolytic cleavage. Subsequently, Cu2+ was reduced to Cu+ with the assistance of the free radicals, and numerous electroactive probes were grafted onto the electrode surface. Under optimal conditions, the limit of detection (LOD) of this method was 3.16 fM (S/N = 3, R2 = 0.992), and the linear range was from 10 fM to 1.0 nM. More importantly, the preparation process of this biosensor was simple and less laborious with a low background signal, suggesting good potential in practical applications.
Collapse
Affiliation(s)
- Ligang Ma
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450008, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Movilli J, Kolkman RW, Rozzi A, Corradini R, Segerink LI, Huskens J. Increasing the Sensitivity of Electrochemical DNA Detection by a Micropillar-Structured Biosensing Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4272-4279. [PMID: 32239946 PMCID: PMC7191753 DOI: 10.1021/acs.langmuir.0c00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Indexed: 06/01/2023]
Abstract
The available active surface area and the density of probes immobilized on this surface are responsible for achieving high specificity and sensitivity in electrochemical biosensors that detect biologically relevant molecules, including DNA. Here, we report the design of gold-coated, silicon micropillar-structured electrodes functionalized with modified poly-l-lysine (PLL) as an adhesion layer to concomitantly assess the increase in sensitivity with the increase of the electrochemical area and control over the probe density. By systematically reducing the center-to-center distance between the pillars (pitch), denser micropillar arrays were formed at the electrode, resulting in a larger sensing area. Azido-modified peptide nucleic acid (PNA) probes were click-reacted onto the electrode interface, exploiting PLL with appended oligo(ethylene glycol) (OEG) and dibenzocyclooctyne (DBCO) moieties (PLL-OEG-DBCO) for antifouling and probe binding properties, respectively. The selective electrochemical sandwich assay formation, composed of consecutive hybridization steps of the target complementary DNA (cDNA) and reporter DNA modified with the electroactive ferrocene functionality (rDNA-Fc), was monitored by quartz crystal microbalance. The DNA detection performance of micropillared electrodes with different pitches was evaluated by quantifying the cyclic voltammetric response of the surface-confined rDNA-Fc. By decrease of the pitch of the pillar array, the area of the electrode was enhanced by up to a factor 10.6. A comparison of the electrochemical data with the geometrical area of the pillared electrodes confirmed the validity of the increased sensitivity of the DNA detection by the design of the micropillar array.
Collapse
Affiliation(s)
- Jacopo Movilli
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ruben W Kolkman
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Andrea Rozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
17
|
Electrochemical CYFRA21-1 DNA sensor with PCR-like sensitivity based on AgNPs and cascade polymerization. Anal Bioanal Chem 2020; 412:4155-4163. [PMID: 32306069 DOI: 10.1007/s00216-020-02652-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
In this work, a new method of CYFRA21-1 DNA (tDNA) detection based on electrochemically mediated atom transfer radical polymerization (e-ATRP) and surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) cascade polymerization and AgNP deposition is proposed. Firstly, the peptide nucleic acid (PNA) probe is captured on a gold electrode by Au-S bonds for specific recognition of tDNA. After hybridization, PNA/DNA strands provide high-density phosphate groups for the subsequent ATRP initiator by the identified carboxylate-Zr4+-phosphate chemistry. Then, a large number of monomers are successfully grafted from the DNA through the e-ATRP reaction. After that, the chain transfer agent of SI-RAFT and methacrylic acid (MAA) are connected by recognized carboxylate-Zr4+-carboxylate chemistry. Subsequently, through SI-RAFT, the resulting polymer introduces numerous aldehyde groups, which could deposit many AgNPs on tDNA through silver mirror reaction, causing significant amplification of the electrochemical signal. Under optimal conditions, this designed method exhibits a low detection limit of 0.487 aM. Moreover, the method enables us to detect DNA at the level of PCR-like and shows high selectivity and strong anti-interference ability in the presence of serum. It suggests that this new sensing signal amplification technology exhibits excellent potential of application in the early diagnosis of non-small cell lung cancer (NSCLC). Graphical abstract Electrochemical detection principle for CYFRA21-1 DNA based on e-ATRP and SI-RAFT signal amplification technology.
Collapse
|
18
|
Hu Q, Bao Y, Gan S, Zhang Y, Han D, Niu L. Amplified Electrochemical Biosensing of Thrombin Activity by RAFT Polymerization. Anal Chem 2020; 92:3470-3476. [DOI: 10.1021/acs.analchem.9b05647] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiong Hu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuwei Zhang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
19
|
Zheng X, Liu Q, Li M, Feng W, Yang H, Kong J. Dual atom transfer radical polymerization for ultrasensitive electrochemical DNA detection. Bioelectrochemistry 2020; 133:107462. [PMID: 32058273 DOI: 10.1016/j.bioelechem.2020.107462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Atom transfer radical polymerization as a form of controlled/living radical polymerization is particularly attractive. In this work, dual atom transfer radical polymerization (ATRP) is reported for ultrasensitive DNA detection. Firstly, a peptide nucleic acid (PNA) modified with a thiol group was self-assembled on an electrode surface to capture target DNA (TDNA). The initiator of the first ATRP (ATRP-1), α-bromoisobutyric acid (BIBA), was linked to forming PNA/DNA heteroduplexes via coordination of Zr4+. The polymer chain formed by the monomer of ATRP-1 (2-(2-bromoisobutyryloxy) ethyl methacrylate, BIEM) was also one of initiators of the second ATRP (eATRP-2). The other initiator of eATRP-2 was additional BIBA. ATRP-1 involves activator regeneration by electron transfer (ARGET) ATRP, regulated via excess reducing agent. eATRP-2 is electrochemically mediated ATRP which can control the polymerization via an appropriate applied potential. Compared with one ATRP, more monomers of eATRP-2 modified with ferrocene are attached to electrode surface. Under optimal conditions, this dual ATRP strategy provides a low limit of detection (25 aM, ~150 molecules) with satisfactory selectivity and stability. Importantly, this strategy presents a useful prospect for the field of biomolecule detection.
Collapse
Affiliation(s)
- Xiaoke Zheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Manman Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weisheng Feng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
20
|
Hu Q, Kong J, Han D, Bao Y, Zhang X, Zhang Y, Niu L. Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization. Talanta 2020; 206:120173. [DOI: 10.1016/j.talanta.2019.120173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 01/16/2023]
|
21
|
Messina MS, Messina KMM, Bhattacharya A, Montgomery HR, Maynard HD. Preparation of Biomolecule-Polymer Conjugates by Grafting-From Using ATRP, RAFT, or ROMP. Prog Polym Sci 2020; 100:101186. [PMID: 32863465 PMCID: PMC7453843 DOI: 10.1016/j.progpolymsci.2019.101186] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomolecule-polymer conjugates are constructs that take advantage of the functional or otherwise beneficial traits inherent to biomolecules and combine them with synthetic polymers possessing specially tailored properties. The rapid development of novel biomolecule-polymer conjugates based on proteins, peptides, or nucleic acids has ushered in a variety of unique materials, which exhibit functional attributes including thermo-responsiveness, exceptional stability, and specialized specificity. Key to the synthesis of new biomolecule-polymer hybrids is the use of controlled polymerization techniques coupled with either grafting-from, grafting-to, or grafting-through methodology, each of which exhibit distinct advantages and/or disadvantages. In this review, we present recent progress in the development of biomolecule-polymer conjugates with a focus on works that have detailed the use of grafting-from methods employing ATRP, RAFT, or ROMP.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Kathryn M M Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
22
|
Abstract
This review summarizes various radical polymerization chemistries for amplifying biodetection signals and compares them from the practical point of view.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Hadley D. Sikes
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Program in Polymers and Soft Matter
| |
Collapse
|
23
|
Multiple self-cleaning paper-based electrochemical ratiometric biosensor based on the inner reference probe and exonuclease III-assisted signal amplification strategy. Biosens Bioelectron 2020; 147:111769. [DOI: 10.1016/j.bios.2019.111769] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
|
24
|
Hu Q, Gan S, Bao Y, Zhang Y, Han D, Niu L. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing. J Mater Chem B 2020; 8:3327-3340. [DOI: 10.1039/c9tb02419k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlled/“living” radical polymerization-based signal amplification strategies and their applications in highly sensitive biosensing of clinically relevant biomolecules are reviewed.
Collapse
Affiliation(s)
- Qiong Hu
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Yuwei Zhang
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Li Niu
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
25
|
Mohajeri N, Imani M, Akbarzadeh A, Sadighi A, Zarghami N. An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: Possible applications in medical and biotechnological utilities. Biosens Bioelectron 2019; 144:111633. [DOI: 10.1016/j.bios.2019.111633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
26
|
Electrochemical lead(II) biosensor by using an ion-dependent split DNAzyme and a template-free DNA extension reaction for signal amplification. Mikrochim Acta 2019; 186:709. [PMID: 31650391 DOI: 10.1007/s00604-019-3857-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
A voltammetric biosensor for lead(II) (Pb2+) is described that is based on signal amplification by using an ion-dependent split DNAzyme and template-free DNA extension reaction. The Pb2+-dependent split DNAzyme was assembled on gold nanoparticles (Au@Fe3O4), and this nanoprobe then was exposed to Pb2+ which causes the split-off of DNAzymes to release primers containing 3'-OH groups (S1 and S2). The template-free DNA extension reaction triggers the generation of long ssDNA nanotails, which then can bind the free redox probe N,N'-bis(2-(trimethylammonium iodide)propylene)perylene-3,4,9,10-tetracarboxyldiimide (PDA+) via electrostatic adsorption. Hence, the concentration of PDA+ in solution is reduced. Therefore, less free PDA+ can be immobilized on a glassy carbon electrode modified with electrodeposited gold nanoparticles (depAu) to produce an electrochemical signal, typically measured at ∼0.38 V (vs. SCE) for quantitation of Pb2+. The use of a Pb2+-dependent split DNAzyme avoids the usage of a proteinic enzyme. It also increases the sensitivity of the sensor which has a lower detection limit of 30 pM of Pb2+. Graphical abstract Novel electrochemical biosensor based on the amplification of ion-dependent split DNAzyme and template-free DNA extension reaction for trace detection of Pb2+.
Collapse
|
27
|
Abstract
DNAs are one of the most fundamental molecules for life. Quantification of specific sequences is of great importance for biological research and clinical diagnosis. In order to determine extremely low abundant DNAs, we herein develop a novel electrochemical genosensor taking advantage of a smart bipedal DNA walking machine. Magnetic nanomaterials are first employed to enrich target DNA. Strand displacement amplification initiated by target DNA is then designed on the surface of the nanomaterials, the products of which can be used to trigger bipedal DNA walking on the surface of an electrode. Benefiting from triple amplification, ultrahigh sensitivity is achieved for electrochemical analysis of DNA. More importantly, the proposed strategy opens a new avenue for employing the bipedal DNA walker for sensitive detection of various biomolecules with signal amplification.
Collapse
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|