1
|
Freire MS, Silva HJB, Albuquerque GM, Monte JP, Lima MTA, Silva JJ, Pereira GAL, Pereira G. Advances on chalcogenide quantum dots-based sensors for environmental pollutants monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172848. [PMID: 38703843 DOI: 10.1016/j.scitotenv.2024.172848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Water contamination represents a significant ecological impact with global consequences, contributing to water scarcity worldwide. The presence of several pollutants, including heavy metals, pharmaceuticals, pesticides, and pathogens, in water resources underscores a pressing global concern, prompting the European Union (EU) to establish a Water Watch List to monitor the level of these substances. Nowadays, the standard methods used to detect and quantify these contaminants are mainly liquid or gas chromatography coupled with mass spectrometry (LC/GC-MS). While these methodologies offer precision and accuracy, they require expensive equipment and experienced technicians, and cannot be used on the field. In this context, chalcogenide quantum dots (QDs)-based sensors have emerged as promising, user-friendly, practical, and portable tools for environmental monitoring. QDs are semiconductor nanocrystals that possess excellent properties, and have demonstrated versatility across various sensor types, such as fluorescent, electrochemical, plasmonic, and colorimetric ones. This review summarizes recent advances (2019-2023) in the use of chalcogenide QDs for environmental sensing, highlighting the development of sensors capable of detect efficiently heavy metals, anions, pharmaceuticals, pesticides, endocrine disrupting compounds, organic dyes, toxic gases, nitroaromatics, and pathogens.
Collapse
Affiliation(s)
- Mércia S Freire
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hitalo J B Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Joalen P Monte
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Max T A Lima
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jailson J Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Ramachandran Nair V, Sandeep K, Shanthil M, Dhanya S, Archana A, Vibin M, Divyalakshmi H. Simple and Cost-Effective Quantum Dot Chemodosimeter for Visual Detection of Biothiols in Human Blood Serum. ACS OMEGA 2024; 9:6588-6594. [PMID: 38371793 PMCID: PMC10870302 DOI: 10.1021/acsomega.3c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
An emission "turn-off" chemodosimeter for the naked-eye detection of biothiols using silica-overcoated cadmium selenide quantum dots is developed. Hole scavenging by the thiol group of cysteine, homocysteine, or glutathione on interaction with quantum dots resulted in an instant and permanent emission quenching under physiologically relevant conditions. Also, the emission suppression is so specific that thiols and substituted thiols (methionine and cystine) can easily be distinguished. A pilot experiment for the visual detection of serum thiols in human blood was also conducted. Densitometry analysis proved the potential of this system as a new methodology in clinical chemistry and research laboratories for routine blood and urine analyses using a simple procedure. This method enables one to visually distinguish biothiols and oxidized biothiols, whose ratio plays a crucial role in maintaining "redox thiol status" in the blood.
Collapse
Affiliation(s)
- Vinayakan Ramachandran Nair
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
- Chemical
Sciences and Technology Division, National
Institute for Interdisciplinary Science and Technology (NIIST-CSIR), Thiruvananthapuram 695019, Kerala, India
| | - Kulangara Sandeep
- Department
of Chemistry, Government Victoria College,
Research Center under University of Calicut, Palakkad 678001, Kerala, India
| | - Madhavan Shanthil
- Department
of Chemistry, Government Victoria College,
Research Center under University of Calicut, Palakkad 678001, Kerala, India
| | - Santhakumar Dhanya
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
| | - Aravind Archana
- Department
of Chemistry, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India
| | - Muthunayagam Vibin
- Department
of Biochemistry, St. Albert’s College
(Autonomous), Mahatma Gandhi University, Ernakulam 682018, Kerala, India
| | - Hareendran Divyalakshmi
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
| |
Collapse
|
3
|
Ye Z, Liu Y, Pan M, Tao X, Chen Y, Ma P, Zhuo Y, Song D. AgInZnS quantum dots as anodic emitters with strong and stable electrochemiluminescence for biosensing application. Biosens Bioelectron 2023; 228:115219. [PMID: 36913885 DOI: 10.1016/j.bios.2023.115219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Quantum dots (QDs) have become promising electrochemiluminescence (ECL) emitters with high quantum yield and size-tunable luminescence. However, most QDs generate strong ECL emission at the cathode, developing anodic ECL-emitting QDs with excellent performance is challenging. In this work, low-toxic quaternary AgInZnS QDs synthesized by a one-step aqueous phase method were used as novel anodic ECL emitters. AgInZnS QDs exhibited strong and stable ECL emission and a low excitation potential, which could avoid the side reaction of oxygen evolution. Furthermore, AgInZnS QDs displayed high ECL efficiency (ΦECL) of 5.84, taking the ΦECL of Ru(bpy)32+/tripropylamine (TPrA) ECL system as 1. Compared to AgInS2 QDs without Zn doping and traditional anode luminescent CdTe QDs, the ECL intensity of AgInZnS QDs was 1.62 times and 3.64 times higher than that of AgInS2 QDs and CdTe QDs, respectively. As a proof-of-concept, we further designed an "on-off-on" ECL biosensor for detecting microRNA-141 based on a dual isothermal enzyme-free strand displacement reaction (SDR), which not only to achieve the cyclic amplification of the target and ECL signal, but also to construct a switch of the biosensor. The ECL biosensor had a wide linear range from 100 aM to 10 nM with a low detection limit of 33.3 aM. Together, the constructed ECL sensing platform is a promising tool for rapid and accurate diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yibing Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Meichen Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiuli Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
4
|
Xu W, Liu Y, Bai J, Li Y, Qu S. Optical fiber inclinometer with dynamically controllable excitation length of quantum dots liquid-core waveguide based on a photo-controlled bubble. OPTICS LETTERS 2023; 48:1403-1406. [PMID: 36946938 DOI: 10.1364/ol.483220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
An ultracompact fiber inclinometer based on a bubble controlled by Marangoni force is proposed in this Letter. By coupling a 980-nm laser, the bubble can suspend in a quantum dots (QDs) liquid-core waveguide (LCW) due to the Marangoni effect. Under the excitation of a 405-nm laser, QDs LCW exhibit green emissions centered at 523 nm. When the tilt angle changes, the position of the bubble changes as well, which causes the variation of the 523-nm fluorescence intensity. The experimental results show that the sensitivity based on the peak intensity ratio (PIR) reaches 0.22/° with a linearity of 0.979 from 0° to 35°. Furthermore, the sensor has excellent stability and repeatability.
Collapse
|
5
|
Hildebrandt N, Lim M, Kim N, Choi DY, Nam JM. Plasmonic quenching and enhancement: metal-quantum dot nanohybrids for fluorescence biosensing. Chem Commun (Camb) 2023; 59:2352-2380. [PMID: 36727288 DOI: 10.1039/d2cc06178c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Plasmonic metal nanoparticles and semiconductor quantum dots (QDs) are two of the most widely applied nanomaterials for optical biosensing and bioimaging. While their combination for fluorescence quenching via nanosurface energy transfer (NSET) or Förster resonance energy transfer (FRET) offers powerful ways of tuning and amplifying optical signals and is relatively common, metal-QD nanohybrids for plasmon-enhanced fluorescence (PEF) have been much less prevalent. A major reason is the competition between fluorescence quenching and enhancement, which poses important challenges for optimizing distances, orientations, and spectral overlap toward maximum PEF. In this feature article, we discuss the interplay of the different quenching and enhancement mechanisms (a mixed distance dependence of quenching and enhancement - "quenchancement") to better understand the obstacles that must be overcome for the development of metal-QD nanohybrid-based PEF biosensors. The different nanomaterials, their combination within various surface and solution based design concepts, and their structural and photophysical characterization are reviewed and applications toward advanced optical biosensing and bioimaging are presented along with guidelines and future perspectives for sensitive, selective, and versatile bioanalytical research and biomolecular diagnostics with metal-QD nanohybrids.
Collapse
Affiliation(s)
- Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Mihye Lim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Namjun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Da Yeon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
6
|
Güntner AT, Schenk FM. Environmental formaldehyde sensing at room temperature by smartphone-assisted and wearable plasmonic nanohybrids. NANOSCALE 2023; 15:3967-3977. [PMID: 36723208 PMCID: PMC9949580 DOI: 10.1039/d2nr06599a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Formaldehyde is a toxic and carcinogenic indoor air pollutant. Promising for its routine detection are gas sensors based on localized surface plasmon resonance (LSPR). Such sensors trace analytes by converting tiny changes in the local dielectric environment into easily readable, optical signals. Yet, this mechanism is inherently non-selective to volatile organic compounds (like formaldehyde) and yields rarely detection limits below parts-per-million concentrations. Here, we reveal that chemical reaction-mediated LSPR with nanohybrids of Ag/AgOx core-shell clusters on TiO2 enables highly selective formaldehyde sensing down to 5 parts-per-billion (ppb). Therein, AgOx is reduced by the formaldehyde to metallic Ag resulting in strong plasmonic signal changes, as measured by UV/Vis spectroscopy and confirmed by X-ray diffraction. This interaction is highly selective to formaldehyde over other aldehydes, alcohols, ketones, aromatic compounds (as confirmed by high-resolution mass spectrometry), inorganics, and quite robust to relative humidity changes. Since this sensor works at room temperature, such LSPR nanohybrids are directly deposited onto flexible wristbands to quantify formaldehyde between 40-500 ppb at 50% RH, even with a widely available smartphone camera (Pearson correlation coefficient r = 0.998). Such chemoresponsive coatings open new avenues for wearable devices in environmental, food, health and occupational safety applications, as demonstrated by an early field test in the pathology of a local hospital.
Collapse
Affiliation(s)
- Andreas T Güntner
- Human-centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland.
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), CH-8091 Zürich, Switzerland
| | - Florian M Schenk
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
7
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Li YS, Tseng WL, Lu CY. Determination of formaldehyde in the daily living environment using membrane-enhanced water plug coupled extraction following peptide-based greener reaction derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Wei L, Wang Z, Chen Y. Optical Biosensor for Ochratoxin A Detection in Grains Using an Enzyme-Mediated Click Reaction and Polystyrene Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14798-14804. [PMID: 36372964 DOI: 10.1021/acs.jafc.2c05137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we develop an optical biosensor for highly sensitive and facile detection of ochratoxin A (OTA) using an enzyme-mediated click reaction for signal amplification and polystyrene nanoparticles (PNPs) for signal readout. Alkaline phosphatase was employed to hydrolyze the ascorbic acid-phosphate to generate ascorbic acid, which reduces Cu(II) to Cu(I). Cu(I) can catalyze the click reaction between alkyne-functionalized magnetic beads and azide-functionalized PNPs to form complexes, while unbound PNPs acted as the signal probe. This strategy utilized the high efficiency of click chemistry and the inherent optical absorption properties of PNPs, which effectively improved the sensitivity of conventional immunoassays and simplified the procedures using magnetic separation technology. This optical biosensor enabled OTA detection in a linear range of 0.1 to 50 ng/mL with a detection limit of 54 pg/mL. Moreover, it has been successfully challenged with OTA detection in maize samples, revealing its potential as a promising tool for mycotoxin screening.
Collapse
Affiliation(s)
- Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
| |
Collapse
|
10
|
Zhang Y, Yu Y, Zhang C, Song N, Guo Z, Liang M. Highly Sensitive and Selective Detection of Formaldehyde via Bio-Electrocatalysis over Aldehyde Dehydrogenase. Anal Chem 2022; 94:15827-15831. [DOI: 10.1021/acs.analchem.2c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yinuo Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yue Yu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Changbin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zhanjun Guo
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
11
|
Zhao Y, Song W, Xu J, Wu T, Gong Z, Li Y, Li B, Zhang Y. Light-driven upconversion fluorescence micromotors. Biosens Bioelectron 2022; 221:114931. [DOI: 10.1016/j.bios.2022.114931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
|
12
|
Kadhim MM, Sadoon N, Ahmed Gheni H, Hachim SK, Majdi A, Abdullaha SA, Mahdi Rheima A. Application of B3O3 monolayer as an electrical sensor for detection of formaldehyde gas: A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wu T, Chen X, Gong Z, Yan J, Guo J, Zhang Y, Li Y, Li B. Intracellular Thermal Probing Using Aggregated Fluorescent Nanodiamonds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103354. [PMID: 34813176 PMCID: PMC8787390 DOI: 10.1002/advs.202103354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/02/2021] [Indexed: 05/05/2023]
Abstract
Intracellular thermometry provides important information about the physiological activity of single cells and has been implemented using diverse temperature-sensitive materials as nanoprobes. However, measuring the temperature of specific organelles or subcellular structures is challenging because it requires precise positioning of the nanoprobes. Here, it is shown that dispersed fluorescent nanodiamonds (FNDs) endocytosed in living cells can be aggregated into microspheres using optical forces and used as intracellular temperature probes. The aggregation of the FNDs and electromagnetic resonance between individual nanodiamonds in the microspheres lead to a sevenfold intensity enhancement of 546-nm laser excitation. With the assistance of a scanning optical tweezing system, the FND microspheres can be precisely patterned and positioned within the cells. By measuring the fluorescence spectra of the microspheres, the temperatures at different locations within the cells are detected. The method provides an approach to the constructing and positioning of nanoprobes in an intracellular manner, which has potential applications in high-precision and flexible single-cell analysis.
Collapse
Affiliation(s)
- Tianli Wu
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xixi Chen
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Zhiyong Gong
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Jiahao Yan
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Jinghui Guo
- Department of Physiology, School of MedicineJinan UniversityGuangzhou510632China
| | - Yao Zhang
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yuchao Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Institute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
14
|
Ab initio Nonadiabatic Dynamics of Semiconductor Nanomaterials via Surface Hopping Method. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Ge K, Hu Y, Zheng Y, Jiang P, Li G. Aptamer/derivatization-based surface-enhanced Raman scattering membrane assembly for selective analysis of melamine and formaldehyde in migration of melamine kitchenware. Talanta 2021; 235:122743. [PMID: 34517611 DOI: 10.1016/j.talanta.2021.122743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022]
Abstract
The analysis of contaminants in migration of food contact material (FCMs) is an urgent demand for food safety. In this study, melamine and formaldehyde in melamine kitchenware were selectively analyzed by surface-enhanced Raman scattering (SERS) via aptamer/derivatization-based membrane assembly. The membrane assembly was designed by simple filtration of Ag nanoparticles-decorated "stellate" silicon dioxide (SiO2/Ag) and composites of reduced graphene oxide and Ag nanoparticles (rGO/Ag) functioned with specific reagents. High selectivity can be realized by melamine aptamer and derivatization reagent of formaldehyde, respectively. The relative standard deviations (RSDs) of melamine and formaldehyde analysis for 11 replicate measurements, 14 consecutive days and 25 batches are less than 6.0 %, which shows excellent repeatability and reproducibility. After the method was validated, the limits of detection (LOD) for melamine and formaldehyde are 0.15 mg/L and 0.21 mg/L, respectively. The developed method was applied to determine the content of melamine and formaldehyde in migration of melamine kitchenware with low relative errors (less than 5.3 %) compared to chromatographic results. The recoveries of melamine and formaldehyde for migrations of melamine kitchenware are 91.2-110.0 % and 94.0-106.0 % with RSDs in range of 1.8-8.3 % and 4.7-9.1 %, respectively. The method proposed a new concept of convenient, portable and reliable strategy for analysis of melamine and formaldehyde in migration from FCMs.
Collapse
Affiliation(s)
- Kun Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yanjie Zheng
- Shenzhen Academy of Metrology and Quality Inspection, 518055, Shenzhen, China
| | - Peichun Jiang
- Shenzhen Academy of Metrology and Quality Inspection, 518055, Shenzhen, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Zhou T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. SMALL METHODS 2021; 5:e2100515. [PMID: 34928067 DOI: 10.1002/smtd.202100515] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Indexed: 05/27/2023]
Abstract
Along with the progress of nanoscience and nanotechnology, nanomaterials with attractive structural and functional properties have gained more attention than ever before, especially in the field of electronic sensors. In recent years, the gas sensing devices have made great achievement and also created wide application prospects, which leads to a new wave of research for designing advanced sensing materials. There is no doubt that the characteristics are highly governed by the sensitive layers. For this reason, important advances for the outstanding, novel sensing materials with different dimensional structures including 0D, 1D, 2D, and 3D are reported and summarized systematically. The sensing materials cover noble metals, metal oxide semiconductors, carbon nanomaterials, metal dichalcogenides, g-C3 N4 , MXenes, and complex composites. Discussion is also extended to the relation between sensing performances and their structure, electronic properties, and surface chemistry. In addition, some gas sensing related applications are also highlighted, including environment monitoring, breath analysis, food quality and safety, and flexible wearable electronics, from current situation and the facing challenges to the future research perspectives.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
17
|
Li M, Xie K, Wang G, Zheng J, Cao Y, Wei F, Tu H, Tang J. A Formaldehyde Sensor Based on Self-Assembled Monolayers of Oxidized Thiophene Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5916-5922. [PMID: 33909431 DOI: 10.1021/acs.langmuir.1c00396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-performance formaldehyde sensors play an important role in air quality assessment. Herein, a self-assembled monolayer (SAM) sensor for trace formaldehyde (FA) is fabricated based on the fluorescence enhancement of oxidized thiophene derivatives. In the primary SAM molecules, the functional backbone trithiophene (3T) links to the anchor through an n-propyl group. The anchor with an active Si-Cl bond can form a covalent bond with the SiO2 substrate by solution incubation, which ensures good stability against organic solvents and high sensitivity via monolayer structures. With the alkyl chain's leading, a dense 3T SAM can be obtained on SiO2. Upon exposure to UV light in the presence of oxygen, 3T can be oxidized into a nonfluorescent but coordination-active product with abundant carbonyl groups, which can be doped with FA and induce a blueshifted fluorescence. With this mechanism, we proposed an SAM-based FA sensor by detecting the enhancement of the blueshifted fluorescence. Reliable reversibility, selectivity, stability, and detection limit lower than 1 ppm are achieved in this system. The work provides an experimental basis for developing a cheap, efficient, and flexible sensor for trace FA detection.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Kefeng Xie
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhi Wang
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, P. R. China
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, P. R. China
| | - Jing Zheng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Feng Wei
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, P. R. China
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, P. R. China
| | - Hailing Tu
- GRIMAT Engineering Institute Co., Ltd, Beijing 101407, P. R. China
- State Key Laboratory of Advanced Materials for Smart Sensing, General Research Institute for Nonferrous Metals, Beijing 100088, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
18
|
Gong Z, Wu T, Chen X, Guo J, Zhang Y, Li Y. Upconversion Nanoparticle Decorated Spider Silks as Single-Cell Thermometers. NANO LETTERS 2021; 21:1469-1476. [PMID: 33476159 DOI: 10.1021/acs.nanolett.0c04644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noninvasive and sensitive thermometry of a single living cell is crucial to the analysis of fundamental cellular processes and applications to cancer diagnosis. Optical fibers decorated with temperature-sensitive nanomaterials have become widely used instruments for biosensing temperature. However, current silica fibers exhibit low compatibility and degradability in biosystems. In this work, we employ spider silks as natural optical fibers to construct biocompatible thermometers. The spider silks were drawn directly from Araneus ventricosus and were decorated with core-shell upconversion nanoparticles (UCNPs) via a photophoretic effect. By measuring the fluorescence spectra of the UCNPs on the spider silks, the membrane temperature of a single breast cancer cell was obtained with absolute and relative sensitivities ranging from 3.3 to 4.5 × 10-3 K-1 and 0.2 to 0.8% K-1, respectively. Additionally, the temperature variation during apoptosis was monitored by the thermometer in real time. This work provides a biocompatible tool for precise biosensing and single-cell analysis.
Collapse
Affiliation(s)
- Zhiyong Gong
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Tianli Wu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xixi Chen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jinghui Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
19
|
Ly NH, Kim HH, Joo S. On‐Site
Detection for Hazardous Materials in Chemical Accidents. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry Soongsil University Seoul 06978 Republic of Korea
| | - Ho Hyun Kim
- Department of Integrated Environmental Systems Pyeongtaek University Pyeongtaek Republic of Korea
| | - Sang‐Woo Joo
- Department of Chemistry Soongsil University Seoul 06978 Republic of Korea
| |
Collapse
|
20
|
Yaraki MT, Tan YN. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem Asian J 2020; 15:3180-3208. [PMID: 32808471 PMCID: PMC7693192 DOI: 10.1002/asia.202000847] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Indexed: 12/17/2022]
Abstract
Metal nanoparticles (NP) that exhibit localized surface plasmon resonance play an important role in metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). Among the optical biosensors, MEF and SERS stand out to be the most sensitive techniques to detect a wide range of analytes from ions, biomolecules to macromolecules and microorganisms. Particularly, anisotropic metal NPs with strongly enhanced electric field at their sharp corners/edges under a wide range of excitation wavelengths are highly suitable for developing the ultrasensitive plasmon-enhanced biosensors. In this review, we first highlight the reliable methods for the synthesis of anisotropic gold NPs and silver NPs in high yield, as well as their alloys and composites with good control of size and shape. It is followed by the discussion of different sensing mechanisms and recent advances in the MEF and SERS biosensor designs. This includes the review of surface functionalization, bioconjugation and (directed/self) assembly methods as well as the selection/screening of specific biorecognition elements such as aptamers or antibodies for the highly selective bio-detection. The right combinations of metal nanoparticles, biorecognition element and assay design will lead to the successful development of MEF and SERS biosensors targeting different analytes both in-vitro and in-vivo. Finally, the prospects and challenges of metal-enhanced biosensors for future nanomedicine in achieving ultrasensitive and fast medical diagnostics, high-throughput drug discovery as well as effective and reliable theranostic treatment are discussed.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Yen Nee Tan
- Faculty of Science, Agriculture & EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUnited Kingdom
- Newcastle Research & Innovation Institute (NewRIIS)80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & EmployabilitySingapore609607Singapore
| |
Collapse
|