1
|
Wang X, Sun ML, Lin L, Ledesma-Amaro R, Wang K, Ji XJ. Engineering strategies for producing medium-long chain dicarboxylic acids in oleaginous yeasts. BIORESOURCE TECHNOLOGY 2025; 430:132593. [PMID: 40294756 DOI: 10.1016/j.biortech.2025.132593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/20/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Medium-long chain dicarboxylic acids (DCAs, C ≥ 6) are essential chemical raw materials, with wide applications in the chemical, pharmaceutical, material and food industries. However, the traditional chemical synthesis methods cause environmental pollution and are not in line with goals of sustainable development. With the development of synthetic biology, high-value-added DCAs can be biosynthesized from hydrophobic substrates (HSs) using suitable microorganisms. This review first summarizes the biosynthetic pathway of DCAs in oleaginous yeasts and then emphasizes the related engineering strategies for increasing the product yield, including promoter, enzyme, pathway, cell, fermentation, and downstream engineering. In addition, the challenges and development trends in the biosynthesis of DCAs are discussed, in light of the current progress, challenges, and trends in this field. Finally, guidelines for future research are proposed. Overall, this review systematically summarizes recent engineering strategies for DCAs production in oleaginous yeasts and offers valuable insights for future DCAs biosynthesis.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
2
|
Kang F, Gu F, Zhong Y, Cui Z, Liang Q, Qi Q. Expanding the genetic toolkit of Yarrowia lipolytica: Dynamic promoter engineering enables high-titer biosynthesis of 3-hydroxypropionic acid. BIORESOURCE TECHNOLOGY 2025; 432:132656. [PMID: 40355005 DOI: 10.1016/j.biortech.2025.132656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The oleaginous yeast Yarrowia lipolytica has emerged as a promising microbial chassis for biosynthesis of platform chemicals such as 3-hydroxypropionic acid (3-HP). However, its industrial potential has been limited by the scarcity of precisely regulated genetic tools. To address this gap, we developed a comprehensive promoter toolkit for Y. lipolytica through transcriptome profiling and functional screening. This toolkit includes 82 gradient-strength promoters and 34 growth phase-responsive promoters. Additionally, we identified three strong promoters (PU12, PU13, and PC48) incorporating novel upstream activating sequences (UAS1PC48 and UAS1PU13), which exhibited 0.76-1.00 × higher activity than common promoter pTEFin. By modularly deploying these tools, we optimized 3-HP biosynthesis: gradient promoters balanced expression levels between different functional domains of malonyl-CoA reductase, growth phase-downregulated promoters dynamically attenuated competitive flux of fatty acid synthesis, and strong promoters boosted malonyl-CoA precursor supply. The engineered strain achieved a record-breaking 100.37 g/L 3-HP-the highest titer reported in any yeast system-with a yield of 0.21 g/g glucose and a productivity of 0.48 g/L/h. This work not only significantly expands Y. lipolytica's genetic toolbox but also establishes a blueprint for engineering dynamic microbial cell factories, addressing the urgent demand for sustainable, high-efficiency biomanufacturing platforms.
Collapse
Affiliation(s)
- Fangbing Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Fei Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
3
|
Zhou Y, Sun ML, Lin L, Ledesma-Amaro R, Wang K, Ji XJ, Huang H. Dynamic regulation combined with systematic metabolic engineering for high-level palmitoleic acid accumulation in oleaginous yeast. Metab Eng 2025; 89:33-46. [PMID: 39970999 DOI: 10.1016/j.ymben.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Palmitoleic acid (POA, C16:1Δ9) is widely recognized for its preventive and therapeutic effects in various chronic and cardiovascular diseases, but the current production practices based on plant extraction are both economically and ecologically unsustainable. Although Yarrowia lipolytica is capable of producing POA, it only accumulates to a small percentage of total fatty acids. The present study aimed to enhance the accumulation of POA by employing a two-layer engineering strategy, encompassing the modulation of the fatty acid profile and the promotion of the accumulation of POA-rich lipids. The fatty acid profile was subject to modulation through the engineering of the fatty acid metabolism by expressing heterologous specific fatty acid desaturases CeFat5 and implementing dynamic regulation based on a copper-responsive promoter. Then, the mechanism underlying this improvement of POA production capacity was elucidated. Finally, the POA-rich lipid accumulation ability was enhanced through engineering of the lipid metabolism by overexpressing the heterologous POA-specific triacylglycerol forming acyltransferase, introducing the artificial designed non-carboxylative malonyl-CoA production pathway, and preventing lipid degradation. The resulting optimized yeast strain achieved an impressive POA accumulation accounting for 50.62% of total fatty acids, marking a 37.7-fold improvement over the initial strain. Moreover, a record POA titer of 25.6 g/L was achieved in the bioreactor. Overall, this study introduces a framework for establishing efficient yeast platforms for the accumulation of valuable fatty acids.
Collapse
Affiliation(s)
- Yufan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
4
|
Ijaz S, Bashir A, Malik KA. Expression of Agrobacterium Isopentenyl transferase (IPT) gene in wheat improves drought tolerance. Transgenic Res 2025; 34:7. [PMID: 39786512 DOI: 10.1007/s11248-024-00421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025]
Abstract
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008. The expression cassette was developed containing the IPT gene under transcriptional regulation of the stress-inducible promoter 'Dehydrin,' sourced from Hordeum vulgare. The gene expression cassette was assembled in pSB219M, a modified transformation vector for monocots, equipped with both an antibiotic (spectinomycin) and an herbicide selection marker (BASTA). Initial screening of transgenic plants involved BASTA selection (2 and 3 mg/L) and was subsequently confirmed through PCR analysis. The transformation efficiencies of NR-421 and FSD-2008 were 0.4% and 0.3%, respectively. The qRT-PCR analysis under stress conditions showed a 13.5-fold higher expression of the IPT gene in T2 transgenic plants of NR-421 and a 5.8-fold higher expression in those of FSD-2008 than in non-transgenic controls. Under stress conditions, the wheat transgenic plants exhibited increased chlorophyll and relative water content. Additionally, for total soluble proteins, two transgenic lines from the NR-421 variety showed a significant increase, whereas no notable change was observed in the FSD-2008 transgenics. Moreover, the transgenic lines displayed increased plant height, higher fresh and dry biomass, and increased seed weight compared to the non-transgenic controls. These findings highlight that stress-inducible expression of the IPT gene in wheat leads to enhanced grain yield and subsequently improved drought tolerance.
Collapse
Affiliation(s)
- Sidra Ijaz
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan
| | - Aftab Bashir
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
| | - Kauser A Malik
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan
| |
Collapse
|
5
|
Nguyen L, Schmelzer B, Wilkinson S, Mattanovich D. From natural to synthetic: Promoter engineering in yeast expression systems. Biotechnol Adv 2024; 77:108446. [PMID: 39245291 DOI: 10.1016/j.biotechadv.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Synthetic promoters are particularly relevant for application not only in yeast expression systems designed for high-level heterologous protein production but also in other applications such as metabolic engineering, cell biological research, and stage-specific gene expression control. By designing synthetic promoters, researcher can create customized expression systems tailored to specific needs, whether it is maximizing protein production or precisely controlling gene expression at different stages of a process. While recognizing the limitations of endogenous promoters, they also provide important information needed to design synthetic promoters. In this review, emphasis will be placed on some key approaches to identify endogenous, and to generate synthetic promoters in yeast expression systems. It shows the connection between endogenous and synthetic promoters, highlighting how their interplay contributes to promoter development. Furthermore, this review illustrates recent developments in biotechnological advancements and discusses how this field will evolve in order to develop custom-made promoters for diverse applications. This review offers detailed information, explores the transition from endogenous to synthetic promoters, and presents valuable perspectives on the next generation of promoter design strategies.
Collapse
Affiliation(s)
- Ly Nguyen
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | - Bernhard Schmelzer
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | | | - Diethard Mattanovich
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria.
| |
Collapse
|
6
|
Hu M, Ge J, Jiang Y, Sun X, Guo D, Gu Y. Advances and perspectives in genetic expression and operation for the oleaginous yeast Yarrowia lipolytica. Synth Syst Biotechnol 2024; 9:618-626. [PMID: 38784195 PMCID: PMC11109602 DOI: 10.1016/j.synbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The utilization of industrial biomanufacturing has emerged as a viable and sustainable alternative to fossil-based resources for producing functional chemicals. Moreover, advancements in synthetic biology have created new opportunities for the development of innovative cell factories. Notably, Yarrowia lipolytica, an oleaginous yeast that is generally regarded as safe, possesses several advantageous characteristics, including the ability to utilize inexpensive renewable carbon sources, well-established genetic backgrounds, and mature genetic manipulation methods. Consequently, there is increasing interest in manipulating the metabolism of this yeast to enhance its potential as a biomanufacturing platform. Here, we reviewed the latest developments in genetic expression strategies and manipulation tools related to Y. lipolytica, particularly focusing on gene expression, chromosomal operation, CRISPR-based tool, and dynamic biosensors. The purpose of this review is to serve as a valuable reference for those interested in the development of a Y. lipolytica microbial factory.
Collapse
Affiliation(s)
- Mengchen Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianyue Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yaru Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Dongshen Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Liu SC, Xu L, Sun Y, Yuan L, Xu H, Song X, Sun L. Progress in the Metabolic Engineering of Yarrowia lipolytica for the Synthesis of Terpenes. BIODESIGN RESEARCH 2024; 6:0051. [PMID: 39534575 PMCID: PMC11555184 DOI: 10.34133/bdr.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenes are natural secondary metabolites with isoprene as the basic structural unit; they are widely found in nature and have potential applications as advanced fuels, pharmaceutical ingredients, and agricultural chemicals. However, traditional methods are inefficient for obtaining terpenes because of complex processes, low yields, and environmental unfriendliness. The unconventional oleaginous yeast Yarrowia lipolytica, with a clear genetic background and complete gene editing tools, has attracted increasing attention for terpenoid synthesis. Here, we review the synthetic biology tools for Y. lipolytica, including promoters, terminators, selection markers, and autonomously replicating sequences. The progress and emerging trends in the metabolic engineering of Y. lipolytica for terpenoid synthesis are further summarized. Finally, potential future research directions are envisioned.
Collapse
Affiliation(s)
- Shun-Cheng Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Longxing Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuejia Sun
- School of Nursing and Rehabilitation,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Lijie Yuan
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Hong Xu
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaoming Song
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- School of Life Sciences,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Liangdan Sun
- Health Science Center,
North China University of Science and Technology, Tangshan 063210, Hebei, China
- Key Laboratory for Quality of Salt Alkali Resistant TCM of Hebei Administration of TCM, NorthChina University of Science and Technology, Tangshan 063210, Hebei, China
- Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, Hebei, China
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei, China
- School of Public Health,
North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
8
|
Wang K, Yin M, Sun ML, Zhao Q, Ledesma-Amaro R, Ji XJ, Lin L. Engineering Yarrowia lipolytica for Efficient Synthesis of Geranylgeraniol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20568-20581. [PMID: 39241196 DOI: 10.1021/acs.jafc.4c06749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Geranylgeraniol (GGOH) is a crucial component in fragrances and essential oils, and a valuable precursor of vitamin E. It is primarily extracted from the oleoresin of Bixa orellana, but is challenged by long plant growth cycles, severe environmental pollution, and low extraction efficiency. Chemically synthesized GGOH typically comprises a mix of isomers, making the separation process both challenging and costly. Advancements in synthetic biology have enabled the construction of microbial cell factories for GGOH production. In this study, Yarrowia lipolytica was engineered to efficiently synthesize GGOH by expressing heterologous phosphatase genes, enhancing precursor supplies of farnesyl diphosphate, geranylgeranyl pyrophosphate, and acetyl-CoA, and downregulating the squalene synthesis pathway by promoter engineering. Additionally, optimizing fermentation conditions and reducing reactive oxygen species significantly increased the GGOH titer to 3346.47 mg/L in a shake flask. To the best of our knowledge, this is the highest reported GGOH titer in shaking flasks to date, setting a new benchmark for terpenoid production.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Mingxue Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
9
|
Ji L, Xu S, Zhang Y, Cheng H. Screening of broad-host expression promoters for shuttle expression vectors in non-conventional yeasts and bacteria. Microb Cell Fact 2024; 23:230. [PMID: 39152436 PMCID: PMC11330142 DOI: 10.1186/s12934-024-02506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Qiu Y, Liu W, Wu M, Bao H, Sun X, Dou Q, Jia H, Liu W, Shen Y. Construction of an alternative NADPH regeneration pathway improves ethanol production in Saccharomyces cerevisiae with xylose metabolic pathway. Synth Syst Biotechnol 2024; 9:269-276. [PMID: 38469586 PMCID: PMC10926300 DOI: 10.1016/j.synbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Full conversion of glucose and xylose from lignocellulosic hydrolysates is required for obtaining a high ethanol yield. However, glucose and xylose share flux in the pentose phosphate pathway (PPP) and glycolysis pathway (EMP), with glucose having a competitive advantage in the shared metabolic pathways. In this work, we knocked down ZWF1 to preclude glucose from entering the PPP. This reduced the [NADPH] level and disturbed growth on both glucose or xylose, confirming that the oxidative PPP, which begins with Zwf1p and ultimately leads to CO2 production, is the primary source of NADPH in both glucose and xylose. Upon glucose depletion, gluconeogenesis is necessary to generate glucose-6-phosphate, the substrate of Zwf1p. We re-established the NADPH regeneration pathway by replacing the endogenous NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene TDH3 with heterogenous NADP + -GAPDH genes GDH, gapB, and GDP1. Among the resulting strains, the strain BZP1 (zwf1Δ, tdh3::GDP1) exhibited a similar xylose consumption rate before glucose depletion, but a 1.6-fold increased xylose consumption rate following glucose depletion compared to the original strain BSGX001, and the ethanol yield for total consumed sugars of BZP1 was 13.5% higher than BSGX001. This suggested that using the EMP instead of PPP to generate NADPH reduces the wasteful metabolic cycle and excess CO2 release from oxidative PPP. Furthermore, we used a copper-repressing promoter to modulate the expression of ZWF1 and optimize the timing of turning off the ZWF1, therefore, to determine the competitive equilibrium between glucose-xylose co-metabolism. This strategy allowed fast growth in the early stage of fermentation and low waste in the following stages of fermentation.
Collapse
Affiliation(s)
- Yali Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wei Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Meiling Wu
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Haodong Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xinhua Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qin Dou
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Hongying Jia
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
11
|
Jiang D, Yang M, Chen K, Jiang W, Zhang L, Ji XJ, Jiang J, Lu L. Exploiting synthetic biology platforms for enhanced biosynthesis of natural products in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 399:130614. [PMID: 38513925 DOI: 10.1016/j.biortech.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
With the rapid development of synthetic biology, researchers can design, modify, or even synthesize microorganisms de novo, and microorganisms endowed with unnatural functions can be considered "artificial life" and facilitate the development of functional products. Based on this concept, researchers can solve critical problems related to the insufficient supply of natural products, such as low yields, long production cycles, and cumbersome procedures. Due to its superior performance and unique physiological and biochemical characteristics, Yarrowia lipolytica is a favorable chassis cell used for green biomanufacturing by numerous researchers. This paper mainly reviews the development of synthetic biology techniques for Y. lipolytica and summarizes the recent research progress on the synthesis of natural products in Y. lipolytica. This review will promote the continued innovative development of Y. lipolytica by providing theoretical guidance for research on the biosynthesis of natural products.
Collapse
Affiliation(s)
- Dahai Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Manqi Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kai Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wenxuan Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Liangliang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jianchun Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, People's Republic of China
| | - Liming Lu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
12
|
Bejenari M, Spedtsberg EML, Mathiesen J, Jeppesen AC, Cernat L, Toussaint A, Apostol C, Stoianov V, Pedersen TB, Nielsen MR, Sørensen JL. First-class - biosynthesis of 6-MSA and bostrycoidin type I polyketides in Yarrowia lipolytica. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1327777. [PMID: 38586602 PMCID: PMC10995274 DOI: 10.3389/ffunb.2024.1327777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/09/2024] [Indexed: 04/09/2024]
Abstract
Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.
Collapse
Affiliation(s)
- Mihaela Bejenari
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
- Department of Energy, Aalborg University, Esbjerg, Denmark
| | - Julie Mathiesen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Lucia Cernat
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Aouregane Toussaint
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire Végétale, CEA, CNRS, INRA, IRIG-LPCV, Grenoble, France
| | - Cristina Apostol
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Victor Stoianov
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | |
Collapse
|
13
|
Gu Y, Jiang Y, Li C, Zhu J, Lu X, Ge J, Hu M, Deng J, Ma J, Yang Z, Sun X, Xue F, Du G, Xu P, Huang H. High titer production of gastrodin enabled by systematic refactoring of yeast genome and an antisense-transcriptional regulation toolkit. Metab Eng 2024; 82:250-261. [PMID: 38428728 DOI: 10.1016/j.ymben.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Gastrodin, a phenolic glycoside, is a prominent component of Gastrodia elata, which is renowned for its sedative, hypnotic, anticonvulsant, and neuroprotective activities. Engineering heterologous production of plant natural products in microbial host represents a safe, cost-effective, and scalable alternative to plant extraction. Here, we present the construction of an engineered Yarrowia lipolytica yeast that achieves a high-titer production of gastrodin. We systematically refactored the yeast genome by enhancing the flux of the shikimate pathway and optimizing the glucosyl transfer system. We introduced more than five dozen of genetic modifications onto the yeast genome, including enzyme screening, alleviation of rate-limiting steps, promoter selection, genomic integration site optimization, downregulation of competing pathways, and elimination of gastrodin degradation. Meanwhile, we developed a Copper-induced Antisense-Transcriptional Regulation (CATR) tool. The developed CATR toolkit achieved dynamic repression and activation of violacein synthesis through the addition of copper in Y. lipolytica. This strategy was further used to dynamically regulate the pyruvate kinase node to effectively redirect glycolytic flux towards the shikimate pathway while maintaining cell growth at proper rate. Taken together, these efforts resulted in 9477.1 mg/L of gastrodin in shaking flaks and 13.4 g/L of gastrodin with a yield of 0.149 g/g glucose in a 5-L bioreactor, highlighting the potential for large-scale and sustainable production of gastrodin from microbial fermentation.
Collapse
Affiliation(s)
- Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yaru Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Changfan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jiang Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xueyao Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianyue Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Mengchen Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jieying Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, 237012, China
| | - Zhiliang Yang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd, Taizhou, 318000, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, 515063, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Ganesan V, Monteiro L, Pedada D, Stohr A, Blenner M. High-Efficiency Multiplexed Cytosine Base Editors for Natural Product Synthesis in Yarrowia lipolytica. ACS Synth Biol 2023; 12:3082-3091. [PMID: 37768786 DOI: 10.1021/acssynbio.3c00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.
Collapse
Affiliation(s)
- Vijaydev Ganesan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lummy Monteiro
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dheeraj Pedada
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Anthony Stohr
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mark Blenner
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Yuzbashev TV, Yuzbasheva EY, Melkina OE, Patel D, Bubnov D, Dietz H, Ledesma-Amaro R. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering. Commun Biol 2023; 6:858. [PMID: 37596335 PMCID: PMC10439232 DOI: 10.1038/s42003-023-05202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
CRISPR/Cas9-based technologies are revolutionising the way we engineer microbial cells. One of the key advantages of CRISPR in strain design is that it enables chromosomal integration of marker-free DNA, eliminating laborious and often inefficient marker recovery procedures. Despite the benefits, assembling CRISPR/Cas9 editing systems is still not a straightforward process, which may prevent its use and applications. In this work, we have identified some of the main limitations of current Cas9 toolkits and designed improvements with the goal of making CRISPR technologies easier to access and implement. These include 1) A system to quickly switch between marker-free and marker-based integration constructs using both a Cre-expressing and standard Escherichia coli strains, 2) the ability to redirect multigene integration cassettes into alternative genomic loci via Golden Gate-based exchange of homology arms, 3) a rapid, simple in-vivo method to assembly guide RNA sequences via recombineering between Cas9-helper plasmids and single oligonucleotides. We combine these methodologies with well-established technologies into a comprehensive toolkit for efficient metabolic engineering using CRISPR/Cas9. As a proof of concept, we developed the YaliCraft toolkit for Yarrowia lipolytica, which is composed of a basic set of 147 plasmids and 7 modules with different purposes. We used the toolkit to generate and characterize a library of 137 promoters and to build a de novo strain synthetizing 373.8 mg/L homogentisic acid.
Collapse
Affiliation(s)
- Tigran V Yuzbashev
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
- Plant Sciences and the Bioeconomy, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | | | - Olga E Melkina
- NRC 'Kurchatov Institute'-GosNIIgenetika, Kurchatov Genomic Centre, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia
| | - Davina Patel
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Dmitrii Bubnov
- NRC 'Kurchatov Institute'-GosNIIgenetika, Kurchatov Genomic Centre, 1-st Dorozhny Pr., 1, Moscow, 117545, Russia
| | - Heiko Dietz
- Kaesler Research Institute, Kaesler Nutrition GmbH, Fischkai 1, 27572, Bremerhaven, Germany
| | | |
Collapse
|
16
|
Han Z, Maruwan J, Tang Y, Su WW. Conditional protein degradation in Yarrowia lipolytica using the auxin-inducible degron. Front Bioeng Biotechnol 2023; 11:1188119. [PMID: 37324427 PMCID: PMC10264656 DOI: 10.3389/fbioe.2023.1188119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Conditional protein degradation is a powerful tool for controlled protein knockdown. The auxin-inducible degron (AID) technology uses a plant auxin to induce depletion of degron-tagged proteins, and it has been shown to be functional in several non-plant eukaryotes. In this study, we demonstrated AID-based protein knockdown in an industrially important oleaginous yeast Yarrowia lipolytica. Using the mini-IAA7 (mIAA7) degron derived from Arabidopsis IAA7, coupled with an Oryza sativa TIR1 (OsTIR1) plant auxin receptor F-box protein (expressed from the copper-inducible MT2 promoter), C-terminal degron-tagged superfolder GFP could be degraded in Yarrowia lipolytica upon addition of copper and the synthetic auxin 1-Naphthaleneacetic acid (NAA). However, leaky degradation of the degron-tagged GFP in the absence of NAA was also noted. This NAA-independent degradation was largely eliminated by replacing the wild-type OsTIR1 and NAA with the OsTIR1F74A variant and the auxin derivative 5-Ad-IAA, respectively. Degradation of the degron-tagged GFP was rapid and efficient. However, Western blot analysis revealed cellular proteolytic cleavage within the mIAA7 degron sequence, leading to the production of a GFP sub-population lacking an intact degron. The utility of the mIAA7/OsTIR1F74A system was further explored in controlled degradation of a metabolic enzyme, β-carotene ketolase, which converts β-carotene to canthaxanthin via echinenone. This enzyme was tagged with the mIAA7 degron and expressed in a β-carotene producing Y. lipolytica strain that also expressed OsTIR1F74A controlled by the MT2 promoter. By adding copper and 5-Ad-IAA at the time of culture inoculation, canthaxanthin production was found to be reduced by about 50% on day five compared to the control culture without adding 5-Ad-IAA. This is the first report that demonstrates the efficacy of the AID system in Y. lipolytica. Further improvement of AID-based protein knockdown in Y. lipolytica may be achieved by preventing proteolytic removal of the mIAA7 degron tag.
Collapse
Affiliation(s)
- Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Jessica Maruwan
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Yinjie Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, United States
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI, United States
| |
Collapse
|
17
|
Peng QQ, Guo Q, Chen C, Song P, Wang YT, Ji XJ, Ye C, Shi TQ. High-Level Production of Patchoulol in Yarrowia lipolytica via Systematic Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4638-4645. [PMID: 36883816 DOI: 10.1021/acs.jafc.3c00222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Patchoulol is an important sesquiterpene alcohol with a strong and lasting odor, which has led to prominent applications in perfumes and cosmetics. In this study, systematic metabolic engineering strategies were adopted to create an efficient yeast cell factory for patchoulol overproduction. First, a baseline strain was constructed by selecting a highly active patchoulol synthase. Subsequently, the mevalonate precursor pool was expanded to boost patchoulol synthesis. Moreover, a method for downregulating squalene synthesis based on Cu2+-repressible promoter was optimized, which significantly improved the patchoulol titer by 100.9% to 124 mg/L. In addition, a protein fusion strategy resulted in a final titer of 235 mg/L in shake flasks. Finally, 2.864 g/L patchoulol could be produced in a 5 L bioreactor, representing a remarkable 1684-fold increase compared to the baseline strain. To our knowledge, this is the highest patchoulol titer reported so far.
Collapse
Affiliation(s)
- Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| |
Collapse
|
18
|
Cao L, Li J, Yang Z, Hu X, Wang P. A review of synthetic biology tools in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:129. [PMID: 36944859 DOI: 10.1007/s11274-023-03557-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
Yarrowia lipolytica is a non-conventional oleaginous yeast with great potential for industrial production. Y. lipolytica has a high propensity for flux through tricarboxylic acid cycle intermediates. Therefore, this host is currently being developed as a workhorse, and is rapidly emerging in biotechnology fields, especially for industrial chemical production, whole-cell bioconversion, and the treatment and recycling of industrial waste. In recent studies, Y. lipolytica has been rewritten and introduced with non-native metabolites of certain compounds of interest owing to the advancement in synthetic biology tools. In this review, we collate recent progress to present a detailed and insightful summary of the major developments in synthetic biology tools and techniques for Y. lipolytica, including promoters, terminators, selection markers, autonomously replicating sequences, DNA assembly techniques, genome editing techniques, and subcellular organelle engineering. This comprehensive overview would be a useful resource for future genetic engineering studies to improve the yield of desired metabolic products in Y. lipolytica.
Collapse
Affiliation(s)
- Linshan Cao
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jiajie Li
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Zihan Yang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xiao Hu
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Pengchao Wang
- Aulin College, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory for Enzymes and Enzyme-Like Material Engineering of Heilongjiang, Harbin, 150040, Heilongjiang, People's Republic of China.
- Northeast Forestry University, No. 26 Hexing Road, Harbin, 150000, People's Republic of China.
| |
Collapse
|
19
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
20
|
Bidirectional hybrid erythritol-inducible promoter for synthetic biology in Yarrowia lipolytica. Microb Cell Fact 2023; 22:7. [PMID: 36635727 PMCID: PMC9835291 DOI: 10.1186/s12934-023-02020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The oleaginous yeast Yarrowia lipolytica is increasingly used as a chassis strain for generating bioproducts. Several hybrid promoters with different strengths have been developed by combining multiple copies of an upstream activating sequence (UAS) associated with a TATA box and a core promoter. These promoters display either constitutive, phase-dependent, or inducible strong expression. However, there remains a lack of bidirectional inducible promoters for co-expressing genes in Y. lipolytica. RESULTS This study built on our previous work isolating and characterizing the UAS of the erythritol-induced genes EYK1 and EYD1 (UAS-eyk1). We found an erythritol-inducible bidirectional promoter (BDP) located in the EYK1-EYL1 intergenic region. We used the BDP to co-produce YFP and RedStarII fluorescent proteins and demonstrated that the promoter's strength was 2.7 to 3.5-fold stronger in the EYL1 orientation compared to the EYK1 orientation. We developed a hybrid erythritol-inducible bidirectional promoter (HBDP) containing five copies of UAS-eyk1 in both orientations. It led to expression levels 8.6 to 19.2-fold higher than the native bidirectional promoter. While the BDP had a twofold-lower expression level than the strong constitutive TEF promoter, the HBDP had a 5.0-fold higher expression level when oriented toward EYL1 and a 2.4-fold higher expression level when oriented toward EYK1. We identified the optimal media for BDP usage by exploring yeast growth under microbioreactor conditions. Additionally, we constructed novel Golden Gate biobricks and a destination vector for general use. CONCLUSIONS In this research, we developed novel bidirectional and hybrid bidirectional promoters of which expression can be fine-tuned, responding to the need for versatile promoters in the yeast Y. lipolytica. This study provides effective tools that can be employed to smoothly adjust the erythritol-inducible co-expression of two target genes in biotechnology applications. BDPs developed in this study have potential applications in the fields of heterologous protein production, metabolic engineering, and synthetic biology.
Collapse
|
21
|
Zhao C, Wang XH, Lu XY, Zong H, Zhuge B. Tuning Geraniol Biosynthesis via a Novel Decane-Responsive Promoter in Candida glycerinogenes. ACS Synth Biol 2022; 11:1835-1844. [PMID: 35507528 DOI: 10.1021/acssynbio.2c00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geraniol is a rose-scented monoterpene with significant commercial and industrial value in medicine, condiments, cosmetics, and bioenergy. Here, we first targeted geraniol as a reporter metabolite and explored the suitability and potential of Candida glycerinogenes as a heterologous host for monoterpenoid production. Subsequently, dual-pathway engineering was employed to improve the production of geraniol with a geraniol titer of 858.4 mg/L. We then applied a synthetic hybrid promoter approach to develop a decane-responsive hybrid promoter based on the native promoter PGAP derived from C. glycerinogenes itself. The hybrid promoter was able to be induced by n-decane with 3.6 times higher transcriptional intensity than the natural promoter PGAP. In particular, the hybrid promoter effectively reduces the conflict between cell growth and product formation in the production of geraniol. Ultimately, 1194.6 mg/L geraniol was obtained at the shake flask level. The strong and tunable decane-responsive hybrid promoter developed in this study provides an important tool for fine regulation of toxic terpenoid production in cells.
Collapse
Affiliation(s)
- Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi-Hui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
23
|
Kolhe N, Damle E, Pradhan A, Zinjarde S. A comprehensive assessment of Yarrowia lipolytica and its interactions with metals: Current updates and future prospective. Biotechnol Adv 2022; 59:107967. [PMID: 35489656 DOI: 10.1016/j.biotechadv.2022.107967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica has been popular as a model system for understanding biological processes such as dimorphism and lipid accumulation. The organism can efficiently utilize hydrophobic substrates (hydrocarbons and triglycerides) thereby rendering it relevant in bioremediation of oil polluted environments. The current review focuses on the interactions of this fungus with metal pollutants and its potential application in bioremediation of metal contaminated locales. This fungus is intrinsically equipped with a variety of physiological and biochemical features that enable it to tide over stress conditions induced by the presence of metals. Production of enzymes such as phosphatases, reductases and superoxide dismutases are worth a special mention. In the presence of metals, levels of inherently produced metal binding proteins (metallothioneins) and the pigment melanin are seen to be elevated. Morphological alterations with respect to biofilm formation and dimorphic transition from yeast to mycelial form are also induced by certain metals. The biomass of Y. lipolytica is inherently important as a biosorbent and cell surface modification, process optimization or whole cell immobilization techniques have aided in improving this capability. In the presence of metals such as mercury, cadmium, copper and uranium, the culture forms nanoparticulate deposits. In addition, on account of its intrinsic reductive ability, Y. lipolytica is being exploited for synthesizing nanoparticles of gold, silver, cadmium and selenium with applications as antimicrobial compounds, location agents for bioimaging and as feed supplements. This versatile organism thus has great potential in interacting with various metals and addressing problems related to their pollutant status.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Eeshan Damle
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Aditya Pradhan
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
24
|
Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. BIORESOURCE TECHNOLOGY 2022; 347:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Yarrowia lipolytica is recognized as an excellent non-conventional yeast in the field of biomanufacturing, where it is used as a host to produce oleochemicals, terpenes, organic acids, polyols and recombinant proteins. Consequently, metabolic engineering of this yeast is becoming increasingly popular to advance it as a superior biomanufacturing platform, of which promoters are the most basic elements for tuning gene expression. Endogenous promoters of Yarrowia lipolytica were reviewed, which are the basis for promoter engineering. The engineering strategies, such as hybrid promoter engineering, intron enhancement promoter engineering, and transcription factor-based inducible promoter engineering are described. Additionally, the applications of Yarrowia lipolytica promoter engineering to rationally reconstruct biosynthetic gene clusters and improve the genome-editing efficiency of the CRISPR-Cas systems were reviewed. Finally, research needs and future directions for promoter engineering are also discussed in this review.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
25
|
Duan Y, Du Y, Yi Z, Wang Z, Pei X, Wei X, Li M. Systematic Metabolic Engineering for the Production of Azaphilones in Monascus purpureus HJ11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1589-1600. [PMID: 35085438 DOI: 10.1021/acs.jafc.1c07588] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal azaphilones have attracted considerable interest as they exhibit great potential in food and pharmacological industries. However, there is a severe bottleneck in the low production in wild strains and the ability to genetically engineer azaphilone-producing fungi. Using Monascus azaphilones (MAs) as an example, we demonstrate a systematic metabolic engineering strategy for improving the production of MAs. In this study, Monascus purpureus HJ11 was systematically engineered through a combination of promoter engineering, gene knockout, rate-limiting enzyme overexpression, repression of the competing pathway, enzyme engineering, and metabolic rebalance. The maximum yield and titer of MAs successfully increased to 906 mg/g dry cell weight (DCW) and 14.6 g/L, respectively, 2.6 and 3.7 times higher than those reported in the literature. Our successful model not only offers a practical and efficient way to improve the azaphilone production but also sheds light on the potential of systematic metabolic engineering in nonmodel fungi as a chassis for the production of high-value chemicals.
Collapse
Affiliation(s)
- Yali Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yun Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhiqiang Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhe Wang
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Mu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
26
|
Yan C, Yu W, Zhai X, Yao L, Guo X, Gao J, Zhou YJ. Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha. Synth Syst Biotechnol 2022; 7:498-505. [PMID: 34977394 PMCID: PMC8685918 DOI: 10.1016/j.synbio.2021.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Bio-manufacturing via microbial cell factory requires large promoter library for fine-tuned metabolic engineering. Ogataea polymorpha, one of the methylotrophic yeasts, possesses advantages in broad substrate spectrum, thermal-tolerance, and capacity to achieve high-density fermentation. However, a limited number of available promoters hinders the engineering of O. polymorpha for bio-productions. Here, we systematically characterized native promoters in O. polymorpha by both GFP fluorescence and fatty alcohol biosynthesis. Ten constitutive promoters (PPDH, PPYK, PFBA, PPGM, PGLK, PTRI, PGPI, PADH1, PTEF1 and PGCW14) were obtained with the activity range of 13%–130% of the common promoter PGAP (the promoter of glyceraldehyde-3-phosphate dehydrogenase), among which PPDH and PGCW14 were further verified by biosynthesis of fatty alcohol. Furthermore, the inducible promoters, including ethanol-induced PICL1, rhamnose-induced PLRA3 and PLRA4, and a bidirectional promoter (PMal-PPer) that is strongly induced by sucrose, further expanded the promoter toolbox in O. polymorpha. Finally, a series of hybrid promoters were constructed via engineering upstream activation sequence (UAS), which increased the activity of native promoter PLRA3 by 4.7–10.4 times without obvious leakage expression. Therefore, this study provided a group of constitutive, inducible, and hybrid promoters for metabolic engineering of O. polymorpha, and also a feasible strategy for rationally regulating the promoter strength.
Collapse
Affiliation(s)
- Chunxiao Yan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China.,Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| |
Collapse
|
27
|
Xie Y, Chen S, Xiong X. Metabolic Engineering of Non-carotenoid-Producing Yeast Yarrowia lipolytica for the Biosynthesis of Zeaxanthin. Front Microbiol 2021; 12:699235. [PMID: 34690947 PMCID: PMC8529107 DOI: 10.3389/fmicb.2021.699235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
Zeaxanthin is vital to human health; thus, its production has received much attention, and it is also an essential precursor for the biosynthesis of other critical carotenoids such as astaxanthin and crocetin. Yarrowia lipolytica is one of the most intensively studied non-conventional yeasts and has been genetically engineered as a cell factory to produce carotenoids such as lycopene and β-carotene. However, zeaxanthin production by Y. lipolytica has not been well investigated. To fill this gap, β-carotene biosynthesis pathway has been first constructed in this study by the expression of genes, including crtE, crtB, crtI, and carRP. Three crtZ genes encoding β-carotene hydroxylase from different organisms were individually introduced into β-carotene-producing Y. lipolytica to evaluate their performance for producing zeaxanthin. The expression of crtZ from the bacterium Pantoea ananatis (formerly Erwinia uredovora, Eu-crtZ) resulted in the highest zeaxanthin titer and content on the basis of dry cell weight (DCW). After verifying the function of Eu-crtZ for producing zeaxanthin, the high-copy-number integration into the ribosomal DNA of Y. lipolytica led to a 4.02-fold increase in the titer of zeaxanthin and a 721% increase in the content of zeaxanthin. The highest zeaxanthin titer achieved 21.98 ± 1.80 mg/L by the strain grown on a yeast extract peptone dextrose (YPD)-rich medium. In contrast, the highest content of DCW reached 3.20 ± 0.11 mg/g using a synthetic yeast nitrogen base (YNB) medium to culture the cells. Over 18.0 g/L of citric acid was detected in the supernatant of the YPD medium at the end of cultivation. Furthermore, the zeaxanthin-producing strains still accumulated a large amount of lycopene and β-carotene. The results demonstrated the potential of a cell factory for zeaxanthin biosynthesis and opened up an avenue to engineer this host for the overproduction of carotenoids.
Collapse
Affiliation(s)
| | | | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
28
|
Chintagunta AD, Zuccaro G, Kumar M, Kumar SPJ, Garlapati VK, Postemsky PD, Kumar NSS, Chandel AK, Simal-Gandara J. Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production. Front Microbiol 2021; 12:658284. [PMID: 34475852 PMCID: PMC8406692 DOI: 10.3389/fmicb.2021.658284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Biodiesel is an eco-friendly, renewable, and potential liquid biofuel mitigating greenhouse gas emissions. Biodiesel has been produced initially from vegetable oils, non-edible oils, and waste oils. However, these feedstocks have several disadvantages such as requirement of land and labor and remain expensive. Similarly, in reference to waste oils, the feedstock content is succinct in supply and unable to meet the demand. Recent studies demonstrated utilization of lignocellulosic substrates for biodiesel production using oleaginous microorganisms. These microbes accumulate higher lipid content under stress conditions, whose lipid composition is similar to vegetable oils. In this paper, feedstocks used for biodiesel production such as vegetable oils, non-edible oils, oleaginous microalgae, fungi, yeast, and bacteria have been illustrated. Thereafter, steps enumerated in biodiesel production from lignocellulosic substrates through pretreatment, saccharification and oleaginous microbe-mediated fermentation, lipid extraction, transesterification, and purification of biodiesel are discussed. Besides, the importance of metabolic engineering in ensuring biofuels and biorefinery and a brief note on integration of liquid biofuels have been included that have significant importance in terms of circular economy aspects.
Collapse
Affiliation(s)
- Anjani Devi Chintagunta
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Guntur, India
| | - Gaetano Zuccaro
- Department of Chemical, Materials and Production Engineering, Università degli Studi di Napoli Federico II, Naples, Italy
- LBE, INRAE, Université de Montpellier, Narbonne, France
| | - Mahesh Kumar
- College of Agriculture, Central Agricultural University, Imphal, India
| | - S. P. Jeevan Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
- ICAR-Directorate of Floricultural Research, Pune, India
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, India
| | - Pablo D. Postemsky
- Laboratory of Biotechnology of Edible and Medicinal Mushrooms, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-UNS/CONICET), Buenos Aires, Argentina
| | - N. S. Sampath Kumar
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Guntur, India
| | - Anuj K. Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Lorena, Brazil
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
29
|
Zhao Y, Liu S, Lu Z, Zhao B, Wang S, Zhang C, Xiao D, Foo JL, Yu A. Hybrid promoter engineering strategies in Yarrowia lipolytica: isoamyl alcohol production as a test study. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:149. [PMID: 34215293 PMCID: PMC8252286 DOI: 10.1186/s13068-021-02002-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND In biological cells, promoters drive gene expression by specific binding of RNA polymerase. They determine the starting position, timing and level of gene expression. Therefore, rational fine-tuning of promoters to regulate the expression levels of target genes for optimizing biosynthetic pathways in metabolic engineering has recently become an active area of research. RESULTS In this study, we systematically detected and characterized the common promoter elements in the unconventional yeast Yarrowia lipolytica, and constructed an artificial hybrid promoter library that covers a wide range of promoter strength. The results indicate that the hybrid promoter strength can be fine-tuned by promoter elements, namely, upstream activation sequences (UAS), TATA box and core promoter. Notably, the UASs of Saccharomyces cerevisiae promoters were reported for the first time to be functionally transferred to Y. lipolytica. Subsequently, using the production of a versatile platform chemical isoamyl alcohol as a test study, the hybrid promoter library was applied to optimize the biosynthesis pathway expression in Y. lipolytica. By expressing the key pathway gene, ScARO10, with the promoter library, 1.1-30.3 folds increase in the isoamyl alcohol titer over that of the control strain Y. lipolytica Po1g KU70∆ was achieved. Interestingly, the highest titer increase was attained with a weak promoter PUAS1B4-EXPm to express ScARO10. These results suggest that our hybrid promoter library can be a powerful toolkit for identifying optimum promoters for expressing metabolic pathways in Y. lipolytica. CONCLUSION We envision that this promoter engineering strategy and the rationally engineered promoters constructed in this study could also be extended to other non-model fungi for strain improvement.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shuhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, 117456 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597 Singapore
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| |
Collapse
|
30
|
Xiong X, Xia Y, Qiao J. Editorial: Physiology, Application, and Bioengineering of Oleaginous Microorganisms. Front Microbiol 2021; 12:650957. [PMID: 34054752 PMCID: PMC8160313 DOI: 10.3389/fmicb.2021.650957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
31
|
Park BG, Kim J, Kim EJ, Kim Y, Kim J, Kim JY, Kim BG. Application of Random Mutagenesis and Synthetic FadR Promoter for de novo Production of ω-Hydroxy Fatty Acid in Yarrowia lipolytica. Front Bioeng Biotechnol 2021; 9:624838. [PMID: 33692989 PMCID: PMC7937803 DOI: 10.3389/fbioe.2021.624838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
As a means to develop oleaginous biorefinery, Yarrowia lipolytica was utilized to produce ω-hydroxy palmitic acid from glucose using evolutionary metabolic engineering and synthetic FadR promoters for cytochrome P450 (CYP) expression. First, a base strain was constructed to produce free fatty acids (FFAs) from glucose using metabolic engineering strategies. Subsequently, through ethyl methanesulfonate (EMS)-induced random mutagenesis and fluorescence-activated cell sorting (FACS) screening, improved FFA overproducers were screened. Additionally, synthetic promoters containing bacterial FadR binding sequences for CYP expression were designed to respond to the surge of the concentration of FFAs to activate the ω-hydroxylating pathway, resulting in increased transcriptional activity by 14 times from the third day of culture compared to the first day. Then, endogenous alk5 was screened and expressed using the synthetic FadR promoter in the developed strain for the production of ω-hydroxy palmitic acid. By implementing the synthetic FadR promoter, cell growth and production phases could be efficiently decoupled. Finally, in batch fermentation, we demonstrated de novo production of 160 mg/L of ω-hydroxy palmitic acid using FmeN3-TR1-alk5 in nitrogen-limited media. This study presents an excellent example of the production of ω-hydroxy fatty acids using synthetic promoters with bacterial transcriptional regulator (i.e., FadR) binding sequences in oleaginous yeasts.
Collapse
Affiliation(s)
- Beom Gi Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Junyeob Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
| | - Yechan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Joonwon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Jin Young Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Mitigation of host cell mutations and regime shift during microbial fermentation: a perspective from flux memory. Curr Opin Biotechnol 2020; 66:227-235. [DOI: 10.1016/j.copbio.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
|