1
|
Rudenko AY, Mariasina SS, Ozhiganov RM, Sergiev PV, Polshakov VI. Enzymatic Reactions of S-Adenosyl- L-Methionine: Synthesis and Applications. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S105-S134. [PMID: 40164155 DOI: 10.1134/s0006297924604210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 04/02/2025]
Abstract
S-adenosyl-L-methionine (SAM, AdoMet) is a ubiquitous biomolecule present in all living organisms, playing a central role in a wide array of biochemical reactions and intracellular regulatory pathways. It is the second most common participant in enzymatic reactions in living systems, following adenosine triphosphate (ATP). This review provides a comprehensive analysis of enzymatic reactions involving SAM, whether as a product, a reactant (cosubstrate), or as a non-consumable enzyme cofactor. The discussion encompasses various methods for SAM synthesis, including biotechnological, chemical, and enzymatic approaches. Particular emphasis is placed on the biochemical reactions where SAM functions as a cosubstrate, notably in trans-alkylation reactions, where it acts as a key methyl group donor. Beyond methylation, SAM also serves as a precursor for the synthesis of other molecular building blocks, which are explored in a dedicated section. The review also addresses the role of SAM as a non-consumable cofactor in enzymatic processes, highlighting its function as a prosthetic group for certain protein enzymes and its ability to form complexes with ribozymes. In addition, bioorthogonal systems involving SAM analogues are discussed. These systems employ engineered enzyme-cofactor pairs designed to enable highly selective interactions between target SAM analogues and specific enzymes, facilitating precise reactions even in the presence of other SAM-dependent enzymes. The concluding section explores practical applications of SAM analogues, including their use as selective inhibitors in clinical medicine and as components of reporter systems.
Collapse
Affiliation(s)
- Alexander Yu Rudenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofia S Mariasina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ratislav M Ozhiganov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Petr V Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Selinidis MA, Corliss AC, Chappell J, Silberg JJ. Ribozyme-Mediated Gene-Fragment Complementation for Nondestructive Reporting of DNA Transfer within Soil. ACS Synth Biol 2024; 13:3539-3547. [PMID: 39145471 DOI: 10.1021/acssynbio.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Enzymes that produce volatile metabolites can be coded into genetic circuits to report nondisruptively on microbial behaviors in hard-to-image soils. However, these enzyme reporters remain challenging to apply in gene transfer studies due to leaky off states that can lead to false positives. To overcome this problem, we designed a reporter that uses ribozyme-mediated gene-fragment complementation of a methyl halide transferase (MHT) to regulate the synthesis of methyl halide gases. We split the mht gene into two nonfunctional fragments and attached these to a pair of splicing ribozyme fragments. While the individual mht-ribozyme fragments did not produce methyl halides when transcribed alone in Escherichia coli, coexpression resulted in a spliced transcript that translated the MHT reporter. When cells containing one mht-ribozyme fragment transcribed from a mobile plasmid were mixed with cells that transcribed the second mht-ribozyme fragment, methyl halides were only detected following rare conjugation events. When conjugation was performed in soil, it led to a 16-fold increase in methyl halides in the soil headspace. These findings show how ribozyme-mediated gene-fragment complementation can achieve tight control of protein reporter production, a level of control that will be critical for monitoring the effects of soil conditions on gene transfer and the fidelity of biocontainment measures developed for environmental applications.
Collapse
Affiliation(s)
- Malyn A Selinidis
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
| | - Andrew C Corliss
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - James Chappell
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
4
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
5
|
Anderson CE, Ferreira SS, Antunes MS. Integration of multiple stress signals in plants using synthetic Boolean logic gates. PLANT PHYSIOLOGY 2023; 192:3189-3202. [PMID: 37119276 PMCID: PMC10400031 DOI: 10.1093/plphys/kiad254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
As photosynthetic organisms, plants have a potential role in the sustainable production of high-value products such as medicines, biofuels, and chemical feedstocks. With effective engineering using synthetic biology approaches, plant-based platforms could conceivably be designed to minimize the costs and waste of production for materials that would otherwise be uneconomical. Additionally, modern agricultural crops could be engineered to be more productive, resilient, or restorative in different or rapidly changing environments and climates. Information-processing genetic devices and circuits containing multiple interacting parts that behave predictably must be developed to achieve these complex goals. A genetic Boolean AND logic gate is a device that computes the presence or absence of 2 inputs (signals and stimuli) and produces an output (response) only when both inputs are present. We optimized individual genetic components and used synthetic protein heterodimerizing domains to rationally assemble genetic AND logic gates that integrate 2 hormonal inputs in transgenic Arabidopsis thaliana plants. These AND gates produce an output only in the presence of both abscisic acid and auxin but not when either or neither hormone is present. The AND logic gate can also integrate signals resulting from 2 plant stresses, cold temperature and bacterial infection, to produce a response. The design principles used here are generalizable, and, therefore, multiple orthogonal AND gates could be assembled and rationally layered to process complex genetic information in plants. These layered logic gates may be used in genetic circuits to probe fundamental questions in plant biology, such as hormonal crosstalk, in addition to plant engineering for bioproduction.
Collapse
Affiliation(s)
- Charles E Anderson
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
6
|
Gambill L, Staubus A, Mo KW, Ameruoso A, Chappell J. A split ribozyme that links detection of a native RNA to orthogonal protein outputs. Nat Commun 2023; 14:543. [PMID: 36725852 PMCID: PMC9892565 DOI: 10.1038/s41467-023-36073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Individual RNA remains a challenging signal to synthetically transduce into different types of cellular information. Here, we describe Ribozyme-ENabled Detection of RNA (RENDR), a plug-and-play strategy that uses cellular transcripts to template the assembly of split ribozymes, triggering splicing reactions that generate orthogonal protein outputs. To identify split ribozymes that require templating for splicing, we use laboratory evolution to evaluate the activities of different split variants of the Tetrahymena thermophila ribozyme. The best design delivers a 93-fold dynamic range of splicing with RENDR controlling fluorescent protein production in response to an RNA input. We further resolve a thermodynamic model to guide RENDR design, show how input signals can be transduced into diverse outputs, demonstrate portability across different bacteria, and use RENDR to detect antibiotic-resistant bacteria. This work shows how transcriptional signals can be monitored in situ and converted into different types of biochemical information using RNA synthetic biology.
Collapse
Affiliation(s)
- Lauren Gambill
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77005, USA
| | - August Staubus
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Kim Wai Mo
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Andrea Ameruoso
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - James Chappell
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77005, USA. .,Department of Biosciences, Rice University, Houston, TX, 77005, USA. .,Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
7
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
9
|
Innard N, Chong JPJ. The challenges of monitoring and manipulating anaerobic microbial communities. BIORESOURCE TECHNOLOGY 2022; 344:126326. [PMID: 34780902 DOI: 10.1016/j.biortech.2021.126326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Mixed anaerobic microbial communities are a key component in valorization of waste biomass via anaerobic digestion. Similar microbial communities are important as soil and animal microbiomes and have played a critical role in shaping the planet as it is today. Understanding how individual species within communities interact with others and their environment is important for improving performance and potential applications of an inherently green technology. Here, the challenges associated with making measurements critical to assessing the status of anaerobic microbial communities are considered. How these measurements could be incorporated into control philosophies and augment the potential of anaerobic microbial communities to produce different and higher value products from waste materials are discussed. The benefits and pitfalls of current genetic and molecular approaches to measuring and manipulating anaerobic microbial communities and the challenges which should be addressed to realise the potential of this exciting technology are explored.
Collapse
Affiliation(s)
- Nathan Innard
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK.
| |
Collapse
|
10
|
Grandel NE, Reyes Gamas K, Bennett MR. Control of synthetic microbial consortia in time, space, and composition. Trends Microbiol 2021; 29:1095-1105. [PMID: 33966922 DOI: 10.1016/j.tim.2021.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
While synthetic microbial systems are becoming increasingly complicated, single-strain systems cannot match the complexity of their multicellular counterparts. Such complexity, however, is much more difficult to control. Recent advances have increased our ability to control temporal, spatial, and community compositional organization, including modular adhesive systems, strain growth relationships, and asymmetric cell division. While these systems generally work independently, combining them into unified systems has proven difficult. Once such unification is proven successful we will unlock a new frontier of synthetic biology and open the door to the creation of synthetic biological systems with true multicellularity.
Collapse
Affiliation(s)
- Nicolas E Grandel
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - Kiara Reyes Gamas
- Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| | - Matthew R Bennett
- Department of Biosciences, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Villegas Kcam MC, Tsong AJ, Chappell J. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. Nucleic Acids Res 2021; 49:4793-4802. [PMID: 33823546 PMCID: PMC8096225 DOI: 10.1093/nar/gkab211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR-Cas activator (CRISPRa) systems that selectively turn on transcription of a target gene are a potentially transformative technology for programming cellular function. While in eukaryotes versatile CRISPRa systems exist, in bacteria these systems suffer from a limited ability to activate different genes due to strict distance-dependent requirements of functional target binding sites, and require greater customization to optimize performance in different genetic and cellular contexts. To address this, we apply a rational protein engineering approach to create a new CRISPRa platform that is highly modular to allow for easy customization and has increased targeting flexibility through harnessing engineered Cas proteins. We first demonstrate that transcription activation domains can be recruited by CRISPR-Cas through noncovalent protein-protein interactions, which allows each component to be encoded on separate and easily interchangeable plasmid elements. We then exploit this modularity to rapidly screen a library of different activation domains, creating new systems with distinct regulatory properties. Furthermore, we demonstrate that by harnessing a library of circularly permuted Cas proteins, we can create CRISPRa systems that have different target binding site requirements, which together, allow for expanded target range.
Collapse
Affiliation(s)
| | - Annette J Tsong
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | - James Chappell
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, MS 142, Houston, TX 77005, USA
| |
Collapse
|
12
|
Del Valle I, Fulk EM, Kalvapalle P, Silberg JJ, Masiello CA, Stadler LB. Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Front Microbiol 2021; 11:618373. [PMID: 33633695 PMCID: PMC7901896 DOI: 10.3389/fmicb.2020.618373] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid diversification of synthetic biology tools holds promise in making some classically hard-to-solve environmental problems tractable. Here we review longstanding problems in the Earth and environmental sciences that could be addressed using engineered microbes as micron-scale sensors (biosensors). Biosensors can offer new perspectives on open questions, including understanding microbial behaviors in heterogeneous matrices like soils, sediments, and wastewater systems, tracking cryptic element cycling in the Earth system, and establishing the dynamics of microbe-microbe, microbe-plant, and microbe-material interactions. Before these new tools can reach their potential, however, a suite of biological parts and microbial chassis appropriate for environmental conditions must be developed by the synthetic biology community. This includes diversifying sensing modules to obtain information relevant to environmental questions, creating output signals that allow dynamic reporting from hard-to-image environmental materials, and tuning these sensors so that they reliably function long enough to be useful for environmental studies. Finally, ethical questions related to the use of synthetic biosensors in environmental applications are discussed.
Collapse
Affiliation(s)
- Ilenne Del Valle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, United States
| |
Collapse
|