1
|
Kaya SG, Hovan A, Fraaije MW. Engineering of LOV-domains for their use as protein tags. Arch Biochem Biophys 2025; 763:110228. [PMID: 39592071 DOI: 10.1016/j.abb.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
Collapse
Affiliation(s)
- Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands
| | - Andrej Hovan
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic; Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovakia
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
2
|
Yuan S, Bremmer A, Yang X, Li J, Hu Q. Splittable systems in biomedical applications. Biomater Sci 2024; 12:4103-4116. [PMID: 39012216 DOI: 10.1039/d4bm00709c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| | - Alexa Bremmer
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Xicheng Yang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Jiayue Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| |
Collapse
|
3
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
4
|
Anderson NT, Xie JS, Chacko AN, Liu VL, Fan KC, Mukherjee A. Rational Design of a Circularly Permuted Flavin-Based Fluorescent Protein. Chembiochem 2024; 25:e202300814. [PMID: 38356332 PMCID: PMC11065581 DOI: 10.1002/cbic.202300814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Flavin-based fluorescent proteins are oxygen-independent reporters that hold great promise for imaging anaerobic and hypoxic biological systems. In this study, we explored the feasibility of applying circular permutation, a valuable method for the creation of fluorescent sensors, to flavin-based fluorescent proteins. We used rational design and structural data to identify a suitable location for circular permutation in iLOV, a flavin-based reporter derived from A. thaliana. However, relocating the N- and C-termini to this position resulted in a significant reduction in fluorescence. This loss of fluorescence was reversible, however, by fusing dimerizing coiled coils at the new N- and C-termini to compensate for the increase in local chain entropy. Additionally, by inserting protease cleavage sites in circularly permuted iLOV, we developed two protease sensors and demonstrated their application in mammalian cells. In summary, our work establishes the first approach to engineer circularly permuted FbFPs optimized for high fluorescence and further showcases the utility of circularly permuted FbFPs to serve as a scaffold for sensor engineering.
Collapse
Affiliation(s)
| | - Jason S. Xie
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Vannie L. Liu
- Department of Molecular, Cellular, and Developmental Biology
| | | | | |
Collapse
|
5
|
Nikolaev A, Kuzmin A, Markeeva E, Kuznetsova E, Ryzhykau YL, Semenov O, Anuchina A, Remeeva A, Gushchin I. Reengineering of a flavin-binding fluorescent protein using ProteinMPNN. Protein Sci 2024; 33:e4958. [PMID: 38501498 PMCID: PMC10949330 DOI: 10.1002/pro.4958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 02/18/2024] [Indexed: 03/20/2024]
Abstract
Recent advances in machine learning techniques have led to development of a number of protein design and engineering approaches. One of them, ProteinMPNN, predicts an amino acid sequence that would fold and match user-defined backbone structure. Its performance was previously tested for proteins composed of standard amino acids, as well as for peptide- and protein-binding proteins. In this short report, we test whether ProteinMPNN can be used to reengineer a non-proteinaceous ligand-binding protein, flavin-based fluorescent protein CagFbFP. We fixed the native backbone conformation and the identity of 20 amino acids interacting with the chromophore (flavin mononucleotide, FMN) while letting ProteinMPNN predict the rest of the sequence. The software package suggested replacing 36-48 out of the remaining 86 amino acids so that the resulting sequences are 55%-66% identical to the original one. The three designs that we tested experimentally displayed different expression levels, yet all were able to bind FMN and displayed fluorescence, thermal stability, and other properties similar to those of CagFbFP. Our results demonstrate that ProteinMPNN can be used to generate diverging unnatural variants of fluorescent proteins, and, more generally, to reengineer proteins without losing their ligand-binding capabilities.
Collapse
Affiliation(s)
- Andrey Nikolaev
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alexander Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elena Markeeva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Elizaveta Kuznetsova
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
- Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Arina Anuchina
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| |
Collapse
|
6
|
Lin T, Ge Y, Gao Q, Zhang D, Chen X, Hu Y, Fan J. Backbone Cyclization of Flavin Mononucleotide-Based Fluorescent Protein Increases Fluorescence and Stability. J Microbiol Biotechnol 2023; 33:1681-1691. [PMID: 37789714 PMCID: PMC10772547 DOI: 10.4014/jmb.2305.05011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023]
Abstract
Flavin mononucleotide-binding proteins or domains emit cyan-green fluorescence under aerobic and anaerobic conditions, but relatively low fluorescence and less thermostability limit their application as reporters. In this work, we incorporated the codon-optimized fluorescent protein from Chlamydomonas reinhardtii with two different linkers independently into the redox-responsive split intein construct, overexpressed the precursors in hyperoxic Escherichia coli SHuffle T7 strain, and cyclized the target proteins in vitro in the presence of the reducing agent. Compared with the purified linear protein, the cyclic protein with the short linker displayed enhanced fluorescence. In contrast, cyclized protein with incorporation of the long linker including the myc-tag and human rhinovirus 3C protease cleavable sequence emitted slightly increased fluorescence compared with the protein linearized with the protease cleavage. The cyclic protein with the short linker also exhibited increased thermal stability and exopeptidase resistance. Moreover, induction of the target proteins in an oxygen-deficient culture rendered fluorescent E. coli BL21 (DE3) cells brighter than those overexpressing the linear construct. Thus, the cyclic reporter can hopefully be used in certain thermophilic anaerobes.
Collapse
Affiliation(s)
- Tingting Lin
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yuanyuan Ge
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Qing Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Di Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xiaofeng Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yafang Hu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| |
Collapse
|
7
|
Biggs BW, de Paz AM, Bhan NJ, Cybulski TR, Church GM, Tyo KEJ. Engineering Ca 2+-Dependent DNA Polymerase Activity. ACS Synth Biol 2023; 12:3301-3311. [PMID: 37856140 DOI: 10.1021/acssynbio.3c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Advancements in synthetic biology have provided new opportunities in biosensing, with applications ranging from genetic programming to diagnostics. Next generation biosensors aim to expand the number of accessible environments for measurements, increase the number of measurable phenomena, and improve the quality of the measurement. To this end, an emerging area in the field has been the integration of DNA as an information storage medium within biosensor outputs, leveraging nucleic acids to record the biosensor state over time. However, slow signal transduction steps, due to the time scales of transcription and translation, bottleneck many sensing-DNA recording approaches. DNA polymerases (DNAPs) have been proposed as a solution to the signal transduction problem by operating as both the sensor and responder, but there is presently a lack of DNAPs with functional sensitivity to many desirable target ligands. Here, we engineer components of the Pol δ replicative polymerase complex of Saccharomyces cerevisiae to sense and respond to Ca2+, a metal cofactor relevant to numerous biological phenomena. Through domain insertion and binding site grafting to Pol δ subunits, we demonstrate functional allosteric sensitivity to Ca2+. Together, this work provides an important foundation for future efforts in the development of DNAP-based biosensors.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra M de Paz
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Namita J Bhan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Thaddeus R Cybulski
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging. J Biol Chem 2023; 299:102977. [PMID: 36738792 PMCID: PMC10023982 DOI: 10.1016/j.jbc.2023.102977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.
Collapse
|
9
|
Bitzenhofer NL, Hilgers F, Bosio GN, Torra J, Casini G, Beinlich FRM, Knieps-Grünhagen E, Gordeliy V, Jaeger KE, Nonell S, Krauss U, Gensch T, Drepper T. Development and Characterization of Flavin-Binding Fluorescent Proteins, Part II: Advanced Characterization. Methods Mol Biol 2023; 2564:143-183. [PMID: 36107341 DOI: 10.1007/978-1-0716-2667-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs), a class of small fluorescent proteins derived from light-oxygen-voltage (LOV) domains, bind ubiquitous endogenous flavins as chromophores. Due to their unique properties, they can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents methodologies for in-depth characterization of the biochemical, spectroscopic, photophysical, and photochemical properties of FbFPs.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Gabriela N Bosio
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joaquim Torra
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Giorgia Casini
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Felix R M Beinlich
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Esther Knieps-Grünhagen
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Valentin Gordeliy
- Institute of Bio-and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Thomas Gensch
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Remeeva A, Yudenko A, Nazarenko VV, Semenov O, Smolentseva A, Bogorodskiy A, Maslov I, Borshchevskiy V, Gushchin I. Development and Characterization of Flavin-Binding Fluorescent Proteins, Part I: Basic Characterization. Methods Mol Biol 2023; 2564:121-141. [PMID: 36107340 DOI: 10.1007/978-1-0716-2667-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs) are small fluorescent proteins derived from light-oxygen-voltage (LOV) domains. The proteins bind ubiquitous endogenous flavins as chromophores and can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents the methodology to identify LOV domain sequences in genomic databases; design new FbFPs; characterize their biochemical, spectroscopic, photophysical, and photochemical properties; and conduct basic fluorescence microscopy experiments.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
11
|
Smolentseva A, Goncharov IM, Yudenko A, Bogorodskiy A, Semenov O, Nazarenko VV, Borshchevskiy V, Fonin AV, Remeeva A, Jaeger KE, Krauss U, Gordeliy V, Gushchin I. Extreme dependence of Chloroflexus aggregans LOV domain thermo- and photostability on the bound flavin species. Photochem Photobiol Sci 2021; 20:1645-1656. [PMID: 34796467 DOI: 10.1007/s43630-021-00138-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023]
Abstract
Light-oxygen-voltage (LOV) domains are common photosensory modules that found many applications in fluorescence microscopy and optogenetics. Here, we show that the Chloroflexus aggregans LOV domain can bind different flavin species (lumichrome, LC; riboflavin, RF; flavin mononucleotide, FMN; flavin adenine dinucleotide, FAD) during heterologous expression and that its physicochemical properties depend strongly on the nature of the bound flavin. We show that whereas the dissociation constants for different chromophores are similar, the melting temperature of the protein reconstituted with single flavin species varies from ~ 60 °C for LC to ~ 81 °C for FMN, and photobleaching half-times vary almost 100-fold. These observations serve as a caution for future studies of LOV domains in non-native conditions yet raise the possibility of fine-tuning various properties of LOV-based fluorescent probes and optogenetic tools by manipulating the chromophore composition.
Collapse
Affiliation(s)
- Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexander V Fonin
- Institute of Cytology, Russian Academy of Sciences, 194064, Saint Petersburg, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000, Grenoble, France.,Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
12
|
Goncharov IM, Smolentseva A, Semenov O, Natarov I, Nazarenko VV, Yudenko A, Remeeva A, Gushchin I. High-resolution structure of a naturally red-shifted LOV domain. Biochem Biophys Res Commun 2021; 567:143-147. [PMID: 34153684 DOI: 10.1016/j.bbrc.2021.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/30/2022]
Abstract
LOV domains are widespread photosensory modules that have also found applications in fluorescence microscopy, optogenetics, and light-driven generation of reactive oxygen species. Many of these applications require stable proteins with altered spectra. Here, we report a flavin-based fluorescent protein CisFbFP derived from Chloroflexus islandicus LOV domain-containing protein. We show that CisFbFP is thermostable, and its absorption and fluorescence spectra are red-shifted for ∼6 nm, which has not been observed for other cysteine-substituted natural LOV domains. We also provide a crystallographic structure of CisFbFP at the resolution of 1.2 Å that reveals alterations in the active site due to replacement of conservative asparagine with a serine. Finally, we discuss the possible effects of presence of cis-proline in the Aβ-Bβ loop on the protein's structure and stability. The findings provide the basis for engineering and color tuning of LOV-based tools for molecular biology.
Collapse
Affiliation(s)
- Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Anastasia Smolentseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Oleg Semenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Ilia Natarov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia.
| |
Collapse
|
13
|
Remeeva A, Nazarenko VV, Kovalev K, Goncharov IM, Yudenko A, Astashkin R, Gordeliy V, Gushchin I. Insights into the mechanisms of light-oxygen-voltage domain color tuning from a set of high-resolution X-ray structures. Proteins 2021; 89:1005-1016. [PMID: 33774867 DOI: 10.1002/prot.26078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.
Collapse
Affiliation(s)
- Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vera V Nazarenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Ivan M Goncharov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Roman Astashkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
14
|
Ferrando J, Solomon LA. Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions. Life (Basel) 2021; 11:life11030225. [PMID: 33802210 PMCID: PMC7999464 DOI: 10.3390/life11030225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
De novo protein design is a powerful methodology used to study natural functions in an artificial-protein context. Since its inception, it has been used to reproduce a plethora of reactions and uncover biophysical principles that are often difficult to extract from direct studies of natural proteins. Natural proteins are capable of assuming a variety of different structures and subsequently binding ligands at impressively high levels of both specificity and affinity. Here, we will review recent examples of de novo design studies on binding reactions for small molecules, nucleic acids, and the formation of protein-protein interactions. We will then discuss some new structural advances in the field. Finally, we will discuss some advancements in computational modeling and design approaches and provide an overview of some modern algorithmic tools being used to design these proteins.
Collapse
Affiliation(s)
- Juan Ferrando
- Department of Biology, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Lee A. Solomon
- Department of Chemistry and Biochemistry, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Correspondence: ; Tel.: +703-993-6418
| |
Collapse
|