1
|
Yao Z, Xie T, Deng H, Xiao S, Yang T. Directed Evolution of Microbial Communities in Fermented Foods: Strategies, Mechanisms, and Challenges. Foods 2025; 14:216. [PMID: 39856881 PMCID: PMC11764801 DOI: 10.3390/foods14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Directed Evolution of Microbial Communities (DEMC) offers a promising approach to enhance the functional attributes of microbial consortia in fermented foods by mimicking natural selection processes. This review details the application of DEMC in fermented foods, focusing on optimizing community traits to improve both fermentation efficiency and the sensory quality of the final products. We outline the core techniques used in DEMC, including the strategic construction of initial microbial communities, the systematic introduction of stress factors to induce desirable traits, and the use of artificial selection to cultivate superior communities. Additionally, we explore the integration of genomic tools and dynamic community analysis to understand and guide the evolutionary trajectories of these communities. While DEMC shows substantial potential for refining fermented food products, it faces challenges such as maintaining genetic diversity and functional stability of the communities. Looking ahead, the integration of advanced omics technologies and computational modeling is anticipated to significantly enhance the predictability and control of microbial community evolution in food fermentation processes. By systematically improving the selection and management of microbial traits, DEMC serves as a crucial tool for enhancing the quality and consistency of fermented foods, directly contributing to more robust and efficient food production systems.
Collapse
Affiliation(s)
| | | | | | | | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Xu Z, Sha Y, Li M, Chen S, Li J, Ding B, Zhang Y, Li P, Yan K, Jin M. Adaptive evolution and mechanism elucidation for ethanol tolerant Saccharomyces cerevisiae used in starch based biorefinery. Int J Biol Macromol 2025; 284:138155. [PMID: 39613065 DOI: 10.1016/j.ijbiomac.2024.138155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ethanol tolerant Saccharomyces cerevisiae is compulsory for ethanol production in starch based biorefinery, especially during high-gravity fermentation. In this study, adaptive evolution with increased initial ethanol concentrations as a driving force was harnessed for achieving ethanol tolerant S. cerevisiae. After evolution, an outstanding ethanol tolerant strain was screened, which contributed to significant improvements in glucose consumption and ethanol production in scenarios of 300 g/L initial glucose, high solid loadings (30 wt%, 33 wt%, 35 wt% and 40 wt%) of corn, and high solid loadings (30 wt% and 33 wt%) of cassava, compared with the original strain. Genome re-sequencing was applied for the evolved strain, and 504 sense mutations in 205 genes were detected, among which PAM1 gene was demonstrated related to the elevated ethanol tolerance. In sum, this study provided a practical approach for obtaining ethanol tolerant strain and the identified PAM1 gene enhanced our understanding on ethanol tolerant mechanism, as well as provided a target basis for rational metabolic engineering.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pingping Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kang Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Meng Y, Zhang X, Zhai Y, Li Y, Shao Z, Liu S, Zhang C, Xing XH, Zheng H. Identification of the mutual gliding locus as a factor for gut colonization in non-native bee hosts using the ARTP mutagenesis. MICROBIOME 2024; 12:93. [PMID: 38778376 PMCID: PMC11112851 DOI: 10.1186/s40168-024-01813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The gut microbiota and their hosts profoundly affect each other's physiology and evolution. Identifying host-selected traits is crucial to understanding the processes that govern the evolving interactions between animals and symbiotic microbes. Current experimental approaches mainly focus on the model bacteria, like hypermutating Escherichia coli or the evolutionary changes of wild stains by host transmissions. A method called atmospheric and room temperature plasma (ARTP) may overcome the bottleneck of low spontaneous mutation rates while maintaining mild conditions for the gut bacteria. RESULTS We established an experimental symbiotic system with gnotobiotic bee models to unravel the molecular mechanisms promoting host colonization. By in vivo serial passage, we tracked the genetic changes of ARTP-treated Snodgrassella strains from Bombus terrestris in the non-native honeybee host. We observed that passaged isolates showing genetic changes in the mutual gliding locus have a competitive advantage in the non-native host. Specifically, alleles in the orphan mglB, the GTPase activating protein, promoted colonization potentially by altering the type IV pili-dependent motility of the cells. Finally, competition assays confirmed that the mutations out-competed the ancestral strain in the non-native honeybee gut but not in the native host. CONCLUSIONS Using the ARTP mutagenesis to generate a mutation library of gut symbionts, we explored the potential genetic mechanisms for improved gut colonization in non-native hosts. Our findings demonstrate the implication of the cell mutual-gliding motility in host association and provide an experimental system for future study on host-microbe interactions. Video Abstract.
Collapse
Affiliation(s)
- Yujie Meng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- MGI Tech, Qingdao, 266426, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuan Li
- MGI Tech, Qingdao, 266426, China
| | | | | | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin-Hui Xing
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
4
|
Wang Z, Pan H, Ni S, Li Z, Lian J. Establishing CRISPRi for Programmable Gene Repression and Genome Evolution in Cupriavidus necator. ACS Synth Biol 2024; 13:851-861. [PMID: 38350870 DOI: 10.1021/acssynbio.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Cupriavidus necator H16 is a "Knallgas" bacterium with the ability to utilize various carbon sources and has been employed as a versatile microbial cell factory to produce a wide range of value-added compounds. However, limited genome engineering, especially gene regulation methods, has constrained its full potential as a microbial production platform. The advent of CRISPR/Cas9 technology has shown promise in addressing this limitation. Here, we developed an optimized CRISPR interference (CRISPRi) system for gene repression in C. necator by expressing a codon-optimized deactivated Cas9 (dCas9) and appropriate single guide RNAs (sgRNAs). CRISPRi was proven to be a programmable and controllable tool and could successfully repress both exogenous and endogenous genes. As a case study, we decreased the accumulation of polyhydroxyalkanoate (PHB) via CRISPRi and rewired the carbon fluxes to the synthesis of lycopene. Additionally, by disturbing the expression of DNA mismatch repair gene mutS with CRISPRi, we established CRISPRi-Mutator for genome evolution, rapidly generating mutant strains with enhanced hydrogen peroxide tolerance and robustness in microbial electrosynthesis (MES) system. Our work provides an efficient CRISPRi toolkit for advanced genetic manipulation and optimization of C. necator cell factories for diverse biotechnology applications.
Collapse
Affiliation(s)
- Zhijiao Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Sulin Ni
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
5
|
Su Y, Mangus AM, Cordell WT, Pfleger BF. Overcoming barriers to medium-chain fatty alcohol production. Curr Opin Biotechnol 2024; 85:103063. [PMID: 38219523 PMCID: PMC10922944 DOI: 10.1016/j.copbio.2023.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Medium-chain fatty alcohols (mcFaOHs) are aliphatic primary alcohols containing six to twelve carbons that are widely used in materials, pharmaceuticals, and cosmetics. Microbial biosynthesis has been touted as a route to less-abundant chain-length molecules and as a sustainable alternative to current petrochemical processes. Several metabolic engineering strategies for producing mcFaOHs have been demonstrated in the literature, yet processes continue to suffer from poor selectivity and mcFaOH toxicity, leading to reduced titers, rates, and yields of the desired compounds. This opinion examines the current state of microbial mcFaOH biosynthesis, summarizing engineering efforts to tailor selectivity and improve product tolerance by implementing engineering strategies that circumvent or overcome mcFaOH toxicity.
Collapse
Affiliation(s)
- Yun Su
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anna M Mangus
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William T Cordell
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Carpenter AC, Feist AM, Harrison FS, Paulsen IT, Williams TC. Have you tried turning it off and on again? Oscillating selection to enhance fitness-landscape traversal in adaptive laboratory evolution experiments. Metab Eng Commun 2023; 17:e00227. [PMID: 37538933 PMCID: PMC10393799 DOI: 10.1016/j.mec.2023.e00227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptive Laboratory Evolution (ALE) is a powerful tool for engineering and understanding microbial physiology. ALE relies on the selection and enrichment of mutations that enable survival or faster growth under a selective condition imposed by the experimental setup. Phenotypic fitness landscapes are often underpinned by complex genotypes involving multiple genes, with combinatorial positive and negative effects on fitness. Such genotype relationships result in mutational fitness landscapes with multiple local fitness maxima and valleys. Traversing local maxima to find a global maximum often requires an individual or sub-population of cells to traverse fitness valleys. Traversing involves gaining mutations that are not adaptive for a given local maximum but are necessary to 'peak shift' to another local maximum, or eventually a global maximum. Despite these relatively well understood evolutionary principles, and the combinatorial genotypes that underlie most metabolic phenotypes, the majority of applied ALE experiments are conducted using constant selection pressures. The use of constant pressure can result in populations becoming trapped within local maxima, and often precludes the attainment of optimum phenotypes associated with global maxima. Here, we argue that oscillating selection pressures is an easily accessible mechanism for traversing fitness landscapes in ALE experiments, and provide theoretical and practical frameworks for implementation.
Collapse
Affiliation(s)
- Alexander C. Carpenter
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, 2601, Australia
| | - Adam M. Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Fergus S.M. Harrison
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
| | - Thomas C. Williams
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, 2601, Australia
| |
Collapse
|
7
|
Huttanus HM, Triola EKH, Velasquez-Guzman JC, Shin SM, Granja-Travez RS, Singh A, Dale T, Jha RK. Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations. Front Bioeng Biotechnol 2023; 11:1202388. [PMID: 37545889 PMCID: PMC10400447 DOI: 10.3389/fbioe.2023.1202388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/25/2023] [Indexed: 08/08/2023] Open
Abstract
Targeted mutagenesis of a promoter or gene is essential for attaining new functions in microbial and protein engineering efforts. In the burgeoning field of synthetic biology, heterologous genes are expressed in new host organisms. Similarly, natural or designed proteins are mutagenized at targeted positions and screened for gain-of-function mutations. Here, we describe methods to attain complete randomization or controlled mutations in promoters or genes. Combinatorial libraries of one hundred thousands to tens of millions of variants can be created using commercially synthesized oligonucleotides, simply by performing two rounds of polymerase chain reactions. With a suitably engineered reporter in a whole cell, these libraries can be screened rapidly by performing fluorescence-activated cell sorting (FACS). Within a few rounds of positive and negative sorting based on the response from the reporter, the library can rapidly converge to a few optimal or extremely rare variants with desired phenotypes. Library construction, transformation and sequence verification takes 6-9 days and requires only basic molecular biology lab experience. Screening the library by FACS takes 3-5 days and requires training for the specific cytometer used. Further steps after sorting, including colony picking, sequencing, verification, and characterization of individual clones may take longer, depending on number of clones and required experiments.
Collapse
Affiliation(s)
- Herbert M. Huttanus
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Ellin-Kristina H. Triola
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Jeanette C. Velasquez-Guzman
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
| | - Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Rommel S. Granja-Travez
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Anmoldeep Singh
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Agile BioFoundry, Emeryville, CA, United States
- BOTTLE Consortium, Golden, CO, United States
| |
Collapse
|
8
|
Worthan SB, McCarthy RDP, Behringer MG. Case Studies in the Assessment of Microbial Fitness: Seemingly Subtle Changes Can Have Major Effects on Phenotypic Outcomes. J Mol Evol 2023; 91:311-324. [PMID: 36752825 PMCID: PMC10276084 DOI: 10.1007/s00239-022-10087-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Following the completion of an adaptive evolution experiment, fitness evaluations are routinely conducted to assess the magnitude of adaptation. In doing so, proper consideration should be given when determining the appropriate methods as trade-offs may exist between accuracy and throughput. Here, we present three instances in which small changes in the framework or execution of fitness evaluations significantly impacted the outcomes. The first case illustrates that discrepancies in fitness conclusions can arise depending on the approach to evaluating fitness, the culture vessel used, and the sampling method. The second case reveals that variations in environmental conditions can occur associated with culture vessel material. Specifically, these subtle changes can greatly affect microbial physiology leading to changes in the culture pH and distorting fitness measurements. Finally, the last case reports that heterogeneity in CFU formation time can result in inaccurate fitness conclusions. Based on each case, considerations and recommendations are presented for future adaptive evolution experiments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Robert D P McCarthy
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
9
|
Contributions of Adaptive Laboratory Evolution towards the Enhancement of the Biotechnological Potential of Non-Conventional Yeast Species. J Fungi (Basel) 2023; 9:jof9020186. [PMID: 36836301 PMCID: PMC9964053 DOI: 10.3390/jof9020186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Changes in biological properties over several generations, induced by controlling short-term evolutionary processes in the laboratory through selective pressure, and whole-genome re-sequencing, help determine the genetic basis of microorganism's adaptive laboratory evolution (ALE). Due to the versatility of this technique and the imminent urgency for alternatives to petroleum-based strategies, ALE has been actively conducted for several yeasts, primarily using the conventional species Saccharomyces cerevisiae, but also non-conventional yeasts. As a hot topic at the moment since genetically modified organisms are a debatable subject and a global consensus on their employment has not yet been attained, a panoply of new studies employing ALE approaches have emerged and many different applications have been exploited in this context. In the present review, we gathered, for the first time, relevant studies showing the ALE of non-conventional yeast species towards their biotechnological improvement, cataloging them according to the aim of the study, and comparing them considering the species used, the outcome of the experiment, and the employed methodology. This review sheds light on the applicability of ALE as a powerful tool to enhance species features and improve their performance in biotechnology, with emphasis on the non-conventional yeast species, as an alternative or in combination with genome editing approaches.
Collapse
|
10
|
Ting WW, Ng IS. Adaptive laboratory evolution and metabolic regulation of genetic Escherichia coli W3110 toward low-carbon footprint production of 5-aminolevulinic acid. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Strategies to increase tolerance and robustness of industrial microorganisms. Synth Syst Biotechnol 2022; 7:533-540. [PMID: 35024480 PMCID: PMC8718811 DOI: 10.1016/j.synbio.2021.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023] Open
Abstract
The development of a cost-competitive bioprocess requires that the cell factory converts the feedstock into the product of interest at high rates and yields. However, microbial cell factories are exposed to a variety of different stresses during the fermentation process. These stresses can be derived from feedstocks, metabolism, or industrial production processes, limiting production capacity and diminishing competitiveness. Improving stress tolerance and robustness allows for more efficient production and ultimately makes a process more economically viable. This review summarises general trends and updates the most recent developments in technologies to improve the stress tolerance of microorganisms. We first look at evolutionary, systems biology and computational methods as examples of non-rational approaches. Then we review the (semi-)rational approaches of membrane and transcription factor engineering for improving tolerance phenotypes. We further discuss challenges and perspectives associated with these different approaches.
Collapse
|
12
|
Wang J, Wang Y, Wu Y, Fan Y, Zhu C, Fu X, Chu Y, Chen F, Sun H, Mou H. Application of Microalgal Stress Responses in Industrial Microalgal Production Systems. Mar Drugs 2021; 20:30. [PMID: 35049885 PMCID: PMC8779474 DOI: 10.3390/md20010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Adaptive laboratory evolution (ALE) has been widely utilized as a tool for developing new biological and phenotypic functions to explore strain improvement for microalgal production. Specifically, ALE has been utilized to evolve strains to better adapt to defined conditions. It has become a new solution to improve the performance of strains in microalgae biotechnology. This review mainly summarizes the key results from recent microalgal ALE studies in industrial production. ALE designed for improving cell growth rate, product yield, environmental tolerance and wastewater treatment is discussed to exploit microalgae in various applications. Further development of ALE is proposed, to provide theoretical support for producing the high value-added products from microalgal production.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Yijian Wu
- School of Foreign Languages, Lianyungang Technical College, Lianyungang 222000, China;
| | - Yuwei Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Yawen Chu
- Heze Zonghoo Jianyuan Biotech Co., Ltd, Heze 274000, China;
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (J.W.); (Y.W.); (Y.F.); (C.Z.)
| |
Collapse
|
13
|
Zhang G, Chen Y, Li Q, Zhou J, Li J, Du G. Growth-coupled evolution and high-throughput screening assisted rapid enhancement for amylase-producing Bacillus licheniformis. BIORESOURCE TECHNOLOGY 2021; 337:125467. [PMID: 34320747 DOI: 10.1016/j.biortech.2021.125467] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bacillus licheniformis α-amylase is a thermostable enzyme used in industrial starch hydrolysis. However, difficulties in the genetic manipulation of B. licheniformis hamper further enhancement of α-amylase production. In this regard, adaptive evolution is a useful strategy for promoting the productivity of microbial hosts, although the success of this approach requires the application of suitable evolutionary stress. In this study, we designed a growth-coupled adaptive evolution model to enrich B. licheniformis strains with enhanced amylase productivity and utilization capacity of starch substrates. Single cells of high α-amylase-producing B. licheniformis were isolated using a droplet-based microfluidic platform. Clones with 67% higher α-amylase yield were obtained and analyzed by genome resequencing. Our findings confirmed that growth-coupled evolution combined with high-throughput screening is an efficient strategy for enhanced α-amylase production. In addition, we identified several potential target genes to guide further modification of the B. licheniformis host for efficient protein expression.
Collapse
Affiliation(s)
- Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yukun Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qinghua Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|