1
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
2
|
Chakravarty S, Guttal R, Zhang R, Tian XJ. Mitigating Winner-Take-All Resource Competition through Antithetic Control Mechanism. ACS Synth Biol 2024; 13:4050-4060. [PMID: 39641579 PMCID: PMC11948800 DOI: 10.1021/acssynbio.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Competition among genes for limited transcriptional and translational resources impairs the functionality and modularity of synthetic gene circuits. Traditional control mechanisms, such as feedforward and negative feedback loops, have been proposed to alleviate these challenges, but they often focus on individual modules or inadvertently increase the burden on the system. In this study, we introduce three novel multimodule control strategies─local regulation, global regulation, and negatively competitive regulation (NCR)─that employ an antithetic regulatory mechanism to mitigate resource competition. Our systematic analysis reveals that while all three control mechanisms can alleviate resource competition to some extent, the NCR controller consistently outperforms both the global and local controllers. This superior performance stems from the unique architecture of the NCR controller, which is independent of specific parameter choices. Notably, the NCR controller not only facilitates the activation of less active modules through cross-activation mechanisms but also effectively utilizes the resource consumption within the controller itself. These findings emphasize the critical role of carefully designing the topology of multimodule controllers to ensure robust performance.
Collapse
Affiliation(s)
- Suchana Chakravarty
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Rishabh Guttal
- School of Life Sciences, Arizona State University, Tempe, Arizona State University, Tempe, Arizona 85281, United States
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Kong LW, Shi W, Tian XJ, Lai YC. Effects of growth feedback on adaptive gene circuits: A dynamical understanding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543915. [PMID: 37333159 PMCID: PMC10274713 DOI: 10.1101/2023.06.06.543915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The successful integration of engineered gene circuits into host cells remains a significant challenge in synthetic biology due to circuit-host interactions, such as growth feedback, where the circuit influences cell growth and vice versa. Understanding the dynamics of circuit failures and identifying topologies resilient to growth feedback are crucial for both fundamental and applied research. Utilizing transcriptional regulation circuits with adaptation as a paradigm, we systematically study more than four hundred topological structures and uncover various categories of failures. Three dynamical mechanisms of circuit failures are identified: continuous deformation of the response curve, strengthened or induced oscillations, and sudden switching to coexisting attractors. Our extensive computations also uncover a scaling law between a circuit robustness measure and the strength of growth feedback. Despite the negative effects of growth feedback on the majority of circuit topologies, we identify several circuits that maintain optimal performance as designed, a feature important for applications.
Collapse
|
4
|
Stone A, Youssef A, Rijal S, Zhang R, Tian XJ. Context-dependent redesign of robust synthetic gene circuits. Trends Biotechnol 2024; 42:895-909. [PMID: 38320912 PMCID: PMC11223972 DOI: 10.1016/j.tibtech.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cells provide dynamic platforms for executing exogenous genetic programs in synthetic biology, resulting in highly context-dependent circuit performance. Recent years have seen an increasing interest in understanding the intricacies of circuit-host relationships, their influence on the synthetic bioengineering workflow, and in devising strategies to alleviate undesired effects. We provide an overview of how emerging circuit-host interactions, such as growth feedback and resource competition, impact both deterministic and stochastic circuit behaviors. We also emphasize control strategies for mitigating these unwanted effects. This review summarizes the latest advances and the current state of host-aware and resource-aware design of synthetic gene circuits.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Abdelrahaman Youssef
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
5
|
Barton A, Sesin P, Diambra L. Simplifications and approximations in a single-gene circuit modeling. Sci Rep 2024; 14:12498. [PMID: 38822072 PMCID: PMC11143231 DOI: 10.1038/s41598-024-63265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
The absence of detailed knowledge about regulatory interactions makes the use of phenomenological assumptions mandatory in cell biology modeling. Furthermore, the challenges associated with the analysis of these models compel the implementation of mathematical approximations. However, the constraints these methods introduce to biological interpretation are sometimes neglected. Consequently, understanding these restrictions is a very important task for systems biology modeling. In this article, we examine the impact of such simplifications, taking the case of a single-gene autoinhibitory circuit; however, our conclusions are not limited solely to this instance. We demonstrate that models grounded in the same biological assumptions but described at varying levels of detail can lead to different outcomes, that is, different and contradictory phenotypes or behaviors. Indeed, incorporating specific molecular processes like translation and elongation into the model can introduce instabilities and oscillations not seen when these processes are assumed to be instantaneous. Furthermore, incorporating a detailed description of promoter dynamics, usually described by a phenomenological regulatory function, can lead to instability, depending on the cooperative binding mechanism that is acting. Consequently, although the use of a regulating function facilitates model analysis, it may mask relevant aspects of the system's behavior. In particular, we observe that the two cooperative binding mechanisms, both compatible with the same sigmoidal function, can lead to different phenotypes, such as transcriptional oscillations with different oscillation frequencies.
Collapse
Affiliation(s)
- Alejandro Barton
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo Sesin
- Departamento de Física Teórica, GAIDI, Comisión Nacional de Energía Atómica, 1429, Buenos Aires, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Sechkar K, Steel H, Perrino G, Stan GB. A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits. Nat Commun 2024; 15:1981. [PMID: 38438391 PMCID: PMC10912777 DOI: 10.1038/s41467-024-46410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Within a cell, synthetic and native genes compete for expression machinery, influencing cellular process dynamics through resource couplings. Models that simplify competitive resource binding kinetics can guide the design of strategies for countering these couplings. However, in bacteria resource availability and cell growth rate are interlinked, which complicates resource-aware biocircuit design. Capturing this interdependence requires coarse-grained bacterial cell models that balance accurate representation of metabolic regulation against simplicity and interpretability. We propose a coarse-grained E. coli cell model that combines the ease of simplified resource coupling analysis with appreciation of bacterial growth regulation mechanisms and the processes relevant for biocircuit design. Reliably capturing known growth phenomena, it provides a unifying explanation to disparate empirical relations between growth and synthetic gene expression. Considering a biomolecular controller that makes cell-wide ribosome availability robust to perturbations, we showcase our model's usefulness in numerically prototyping biocircuits and deriving analytical relations for design guidance.
Collapse
Affiliation(s)
- Kirill Sechkar
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Giansimone Perrino
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Stone A, Rijal S, Zhang R, Tian XJ. Enhancing circuit stability under growth feedback with supplementary repressive regulation. Nucleic Acids Res 2024; 52:1512-1521. [PMID: 38164993 PMCID: PMC10853785 DOI: 10.1093/nar/gkad1233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
The field of synthetic biology and biosystems engineering increasingly acknowledges the need for a holistic design approach that incorporates circuit-host interactions into the design process. Engineered circuits are not isolated entities but inherently entwined with the dynamic host environment. One such circuit-host interaction, 'growth feedback', results when modifications in host growth patterns influence the operation of gene circuits. The growth-mediated effects can range from growth-dependent elevation in protein/mRNA dilution rate to changes in resource reallocation within the cell, which can lead to complete functional collapse in complex circuits. To achieve robust circuit performance, synthetic biologists employ a variety of control mechanisms to stabilize and insulate circuit behavior against growth changes. Here we propose a simple strategy by incorporating one repressive edge in a growth-sensitive bistable circuit. Through both simulation and in vitro experimentation, we demonstrate how this additional repressive node stabilizes protein levels and increases the robustness of a bistable circuit in response to growth feedback. We propose the incorporation of repressive links in gene circuits as a control strategy for desensitizing gene circuits against growth fluctuations.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
Melendez-Alvarez JR, Zhang R, Tian XJ. Growth Feedback Confers Cooperativity in Resource-Competing Synthetic Gene Circuits. CHAOS, SOLITONS, AND FRACTALS 2023; 173:113713. [PMID: 37485435 PMCID: PMC10361397 DOI: 10.1016/j.chaos.2023.113713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Modularity is a key concept in designing synthetic gene circuits, as it allows for constructing complex molecular systems using well-characterized building blocks. One of the major challenges in this field is that these modular components often do not function as expected when assembled into larger circuits. One of the major issues is caused by resource competition, where multiple genes in the circuit compete for the same limited cellular resources, such as transcription factors and ribosomes. In addition, the mutual inhibition between synthetic gene circuits and cell growth results in growth feedback that significantly impacts its host-circuit dynamics. However, the complexity of the gene circuit dynamics under intertwined resource competition and growth feedback is not fully understood. This study developed a theoretical framework to examine the dynamics of synthetic gene circuits by considering both growth feedback and resource competition. Our results suggest a cooperative behavior between resource-competing gene circuits under growth feedback. Cooperation or competition is non-monotonically determined by the metabolic burden threshold. These two diverse effects could lead to the activation or deactivation of one circuit by the other. Lastly, the cooperativity mediated by growth feedback can attenuate the winner-takes-all resource competition. These findings show that coupling growth feedback and resource competition plays a crucial role in the dynamics of the host-circuit system, and understanding its effects helps control unexpected gene expression behaviors.
Collapse
Affiliation(s)
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Melendez-Alvarez JR, Tian XJ. Emergence of qualitative states in synthetic circuits driven by ultrasensitive growth feedback. PLoS Comput Biol 2022; 18:e1010518. [PMID: 36112667 PMCID: PMC9518899 DOI: 10.1371/journal.pcbi.1010518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
The mutual interactions between the synthetic gene circuits and the host growth could cause unexpected outcomes in the dynamical behaviors of the circuits. However, how the steady states and the stabilities of the gene circuits are affected by host cell growth is not fully understood. Here, we developed a mathematical model for nonlinear growth feedback based on published experimental data. The model analysis predicts that growth feedback could significantly change the qualitative states of the system. Bistability could emerge in a circuit without positive feedback, and high-order multistability (three or more steady states) arises in the self-activation and toggle switch circuits. Our results provide insight into the potential effects of ultrasensitive growth feedback on the emergence of qualitative states in synthetic circuits and the corresponding underlying mechanism. The mutual inhibitory effect between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback could significantly impact the dynamics of the host-circuit system. However, the complexity of the growth feedback impact is not fully understood. Here, our data analysis displays ultrasensitive growth feedback between the cells and synthetic gene circuits under different growth conditions. To study the effect of ultrasensitive growth feedback on the host-circuit system, we develop a mathematical modeling framework. Our results reveal the emergence of qualitative states on the host-circuit system induced by ultrasensitive growth feedback. We found an emergence of bistability in a simple synthetic gene circuit with a constitutive promoter. Also, tristability could be seen in self-activation and toggle switch circuits. Our research uncovered the effect of ultrasensitive growth feedback in synthetic gene circuits and host interactions. Understanding the effects of ultrasensitive growth feedback could help scientists and engineers identify unexpected outcomes in gene circuits and formulate control strategies.
Collapse
Affiliation(s)
- Juan Ramon Melendez-Alvarez
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
11
|
Goetz H, Stone A, Zhang R, Lai Y, Tian X. Double-edged role of resource competition in gene expression noise and control. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100050. [PMID: 35989723 PMCID: PMC9390979 DOI: 10.1002/ggn2.202100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/08/2022] [Indexed: 04/30/2023]
Abstract
Despite extensive investigation demonstrating that resource competition can significantly alter the deterministic behaviors of synthetic gene circuits, it remains unclear how resource competition contributes to the gene expression noise and how this noise can be controlled. Utilizing a two-gene circuit as a prototypical system, we uncover a surprising double-edged role of resource competition in gene expression noise: competition decreases noise through introducing a resource constraint but generates its own type of noise which we name as "resource competitive noise." Utilization of orthogonal resources enables retainment of the noise reduction conferred by resource constraint while removing the added resource competitive noise. The noise reduction effects are studied using three negative feedback types: negatively competitive regulation (NCR), local, and global controllers, each having four placement architectures in the protein biosynthesis pathway (mRNA or protein inhibition on transcription or translation). Our results show that both local and NCR controllers with mRNA-mediated inhibition are efficacious at reducing noise, with NCR controllers demonstrating a superior noise-reduction capability. We also find that combining feedback controllers with orthogonal resources can improve the local controllers. This work provides deep insights into the origin of stochasticity in gene circuits with resource competition and guidance for developing effective noise control strategies.
Collapse
Affiliation(s)
- Hanah Goetz
- School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeAZ85287USA
| | - Austin Stone
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Rong Zhang
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| | - Ying‐Cheng Lai
- School of Electrical, Computer and Energy EngineeringArizona State UniversityTempeAZ85287USA
- Department of PhysicsArizona State UniversityTempeAZ85287USA
| | - Xiao‐Jun Tian
- School of Biological and Health Systems EngineeringArizona State UniversityTempeAZ85287USA
| |
Collapse
|