1
|
Torres-Tiji Y, Sethuram H, Gupta A, McCauley J, Dutra-Molino JV, Pathania R, Saxton L, Kang K, Hillson NJ, Mayfield SP. Bioinformatic Prediction and High Throughput In Vivo Screening to Identify Cis-Regulatory Elements for the Development of Algal Synthetic Promoters. ACS Synth Biol 2024; 13:2150-2165. [PMID: 38986010 PMCID: PMC11264317 DOI: 10.1021/acssynbio.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Algae biotechnology holds immense promise for revolutionizing the bioeconomy through the sustainable and scalable production of various bioproducts. However, their development has been hindered by the lack of advanced genetic tools. This study introduces a synthetic biology approach to develop such tools, focusing on the construction and testing of synthetic promoters. By analyzing conserved DNA motifs within the promoter regions of highly expressed genes across six different algal species, we identified cis-regulatory elements (CREs) associated with high transcriptional activity. Combining the algorithms POWRS, STREME, and PhyloGibbs, we predicted 1511 CREs and inserted them into a minimal synthetic promoter sequence in 1, 2, or 3 copies, resulting in 4533 distinct synthetic promoters. These promoters were evaluated in vivo for their capacity to drive the expression of a transgene in a high-throughput manner through next-generation sequencing post antibiotic selection and fluorescence-activated cell sorting. To validate our approach, we sequenced hundreds of transgenic lines showing high levels of GFP expression. Further, we individually tested 14 identified promoters, revealing substantial increases in GFP expression─up to nine times higher than the baseline synthetic promoter, with five matching or even surpassing the performance of the native AR1 promoter. As a result of this study, we identified a catalog of CREs that can now be used to build superior synthetic algal promoters. More importantly, here we present a validated pipeline to generate building blocks for innovative synthetic genetic tools applicable to any algal species with a sequenced genome and transcriptome data set.
Collapse
Affiliation(s)
- Y. Torres-Tiji
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| | - H. Sethuram
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| | - A. Gupta
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| | - J. McCauley
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - J.-V. Dutra-Molino
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| | - R. Pathania
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| | - L. Saxton
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| | - K. Kang
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| | - N. J. Hillson
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - S. P. Mayfield
- Division
of Biological Sciences, University of California
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
3
|
Tian C, Li J, Wu Y, Wang G, Zhang Y, Zhang X, Sun Y, Wang Y. An integrative database and its application for plant synthetic biology research. PLANT COMMUNICATIONS 2024; 5:100827. [PMID: 38297840 PMCID: PMC11121754 DOI: 10.1016/j.xplc.2024.100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Plant synthetic biology research requires diverse bioparts that facilitate the redesign and construction of new-to-nature biological devices or systems in plants. Limited by few well-characterized bioparts for plant chassis, the development of plant synthetic biology lags behind that of its microbial counterpart. Here, we constructed a web-based Plant Synthetic BioDatabase (PSBD), which currently categorizes 1677 catalytic bioparts and 384 regulatory elements and provides information on 309 species and 850 chemicals. Online bioinformatics tools including local BLAST, chem similarity, phylogenetic analysis, and visual strength are provided to assist with the rational design of genetic circuits for manipulation of gene expression in planta. We demonstrated the utility of the PSBD by functionally characterizing taxadiene synthase 2 and its quantitative regulation in tobacco leaves. More powerful synthetic devices were then assembled to amplify the transcriptional signals, enabling enhanced expression of flavivirus non-structure 1 proteins in plants. The PSBD is expected to be an integrative and user-centered platform that provides a one-stop service for diverse applications in plant synthetic biology research.
Collapse
Affiliation(s)
- Chenfei Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianhua Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhan Wu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guangyi Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yixin Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiaowei Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuwei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Son SH, Kang J, Shin Y, Lee C, Sung BH, Lee JY, Lee W. Sustainable production of natural products using synthetic biology: Ginsenosides. J Ginseng Res 2024; 48:140-148. [PMID: 38465212 PMCID: PMC10920010 DOI: 10.1016/j.jgr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 03/12/2024] Open
Abstract
Synthetic biology approaches offer potential for large-scale and sustainable production of natural products with bioactive potency, including ginsenosides, providing a means to produce novel compounds with enhanced therapeutic properties. Ginseng, known for its non-toxic and potent qualities in traditional medicine, has been used for various medical needs. Ginseng has shown promise for its antioxidant and neuroprotective properties, and it has been used as a potential agent to boost immunity against various infections when used together with other drugs and vaccines. Given the increasing demand for ginsenosides and the challenges associated with traditional extraction methods, synthetic biology holds promise in the development of therapeutics. In this review, we discuss recent developments in microorganism producer engineering and ginsenoside production in microorganisms using synthetic biology approaches.
Collapse
Affiliation(s)
- So-Hee Son
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jin Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| | - YuJin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - ChaeYoung Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ju Young Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
Rabinowitch I, Colón-Ramos DA, Krieg M. Understanding neural circuit function through synaptic engineering. Nat Rev Neurosci 2024; 25:131-139. [PMID: 38172626 DOI: 10.1038/s41583-023-00777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Synapses are a key component of neural circuits, facilitating rapid and specific signalling between neurons. Synaptic engineering - the synthetic insertion of new synaptic connections into in vivo neural circuits - is an emerging approach for neural circuit interrogation. This approach is especially powerful for establishing causality in neural circuit structure-function relationships, for emulating synaptic plasticity and for exploring novel patterns of circuit connectivity. Contrary to other approaches for neural circuit manipulation, synaptic engineering targets specific connections between neurons and functions autonomously with no user-controlled external activation. Synaptic engineering has been successfully implemented in several systems and in different forms, including electrical synapses constructed from ectopically expressed connexin gap junction proteins, synthetic optical synapses composed of presynaptic photon-emitting luciferase coupled with postsynaptic light-gated channels, and artificial neuropeptide signalling pathways. This Perspective describes these different methods and how they have been applied, and examines how the field may advance.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Daniel A Colón-Ramos
- Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|
6
|
Nava A, Fear AL, Lee N, Mellinger P, Lan G, McCauley J, Tan S, Kaplan N, Goyal G, Coates RC, Roberts J, Johnson Z, Hu R, Wu B, Ahn J, Kim WE, Wan Y, Yin K, Hillson N, Haushalter RW, Keasling JD. Automated Platform for the Plasmid Construction Process. ACS Synth Biol 2023; 12:3506-3513. [PMID: 37948662 PMCID: PMC10729297 DOI: 10.1021/acssynbio.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Indexed: 11/12/2023]
Abstract
There is a growing need for applications capable of handling large synthesis biology experiments. At the core of synthetic biology is the process of cloning and manipulating DNA as plasmids. Here, we report the development of an application named DNAda capable of writing automation instructions for any given DNA construct design generated by the J5 DNA assembly program. We also describe the automation pipeline and several useful features. The pipeline is particularly useful for the construction of combinatorial DNA assemblies. Furthermore, we demonstrate the platform by constructing a library of polyketide synthase parts, which includes 120 plasmids ranging in size from 7 to 14 kb from 4 to 7 DNA fragments.
Collapse
Affiliation(s)
- Alberto
A. Nava
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Anna Lisa Fear
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Namil Lee
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Mellinger
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Guangxu Lan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua McCauley
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Stephen Tan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Nurgul Kaplan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Garima Goyal
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - R. Cameron Coates
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Jacob Roberts
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Zahmiria Johnson
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Romina Hu
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Bryan Wu
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jared Ahn
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Woojoo E. Kim
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yao Wan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Yin
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Nathan Hillson
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
- Center
for Synthetic Biochemistry, Shenzhen Institutes
for Advanced Technologies, Shenzhen 518055, P.R. China
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby 2800, Denmark
| |
Collapse
|
7
|
Kelwick RJR, Webb AJ, Freemont PS. Opportunities for engineering outer membrane vesicles using synthetic biology approaches. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:255-261. [PMID: 39697987 PMCID: PMC11648402 DOI: 10.20517/evcna.2023.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 12/20/2024]
Abstract
Gram-negative bacteria naturally shed lipid vesicles, which contain complex molecular cargoes, from their outer membrane. These outer membrane vesicles (OMVs) have important biological functions relating to microbial stress responses, microbiome regulation, and host-pathogen interactions. OMVs are also attractive vehicles for delivering drugs, vaccines, and other therapeutic agents because of their ability to interact with host cells and their natural immunogenic properties. OMVs are also set to have a positive impact on other biotechnological and medical applications including diagnostics, bioremediation, and metabolic engineering. We envision that the field of synthetic biology offers a compelling opportunity to further expand and accelerate the foundational research and downstream applications of OMVs in a range of applications including the provision of OMV-based healthcare technologies. In our opinion, we discuss how current and potential future synergies between OMV research and synthetic biology approaches might help to further accelerate OMV research and real-world applications for the benefit of animal and human health.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- Authors contributed equally
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- Authors contributed equally
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
- The London Biofoundry, Imperial College Translation & Innovation Hub, White City Campus, London W12 0BZ, UK
| |
Collapse
|
8
|
Ko SC, Cho M, Lee HJ, Woo HM. Biofoundry Palette: Planning-Assistant Software for Liquid Handler-Based Experimentation and Operation in the Biofoundry Workflow. ACS Synth Biol 2022; 11:3538-3543. [PMID: 36173735 DOI: 10.1021/acssynbio.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lab automation has facilitated synthetic biology applications in an automated workflow, and biofoundry facilities have enabled automated high-throughput experiments of gene cloning and genome engineering to be conducted following a precise experimental design and protocol. However, before-experiment procedures in biofoundry applications have been underdetermined. We aimed to develop a Python-based planning-assistant software, namely Biofoundry Palette, for liquid handler-based experimentation and operation in the biofoundry workflow. Depending on the synthetic biology project, variable information and content information may vary; the Biofoundry Palette provides precise information for the before-experiment units for each process module in the biofoundry workflow. As a demonstration, more than 200 unique information sets, generated by Biofoundry Palette, were used in automated gene cloning or pathway construction. The information on planning and management can potentially help the operator faithfully execute the biofoundry workflow after securing the before-experiment unit, thereby lowering the risk of human errors and performing successful biofoundry operations for synthetic biology applications.
Collapse
Affiliation(s)
- Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Mingu Cho
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.,Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Kang DH, Ko SC, Heo YB, Lee HJ, Woo HM. RoboMoClo: A Robotics-Assisted Modular Cloning Framework for Multiple Gene Assembly in Biofoundry. ACS Synth Biol 2022; 11:1336-1348. [PMID: 35167276 DOI: 10.1021/acssynbio.1c00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient and versatile DNA assembly frameworks have had an impact on promoting synthetic biology to build complex biological systems. To accelerate system development, laboratory automation (or biofoundry) provides an opportunity to construct organisms and DNA assemblies via computer-aided design. However, a modular cloning (MoClo) system for multiple DNA assemblies limits the biofoundry workflow in terms of simplicity and feasibility by preparing the number of cloning materials such as destination vectors prior to the automation process. Herein, we propose robot-assisted MoClo (RoboMoClo) to accelerate a synthetic biology project with multiple gene expressions at the biofoundry. The architecture of the RoboMoClo framework provides a hybrid strategy of hierarchical gene assembly and iterative gene assembly, and fewer destination vectors compared with other MoClo systems. An industrial bacterium, Corynebacterium glutamicum, was used as a model host for RoboMoClo. After building a biopart library (promoter and terminator; level 0) and evaluating its features (level 1), various transcriptional directions in multiple gene assemblies (level 2) were studied using the RoboMoClo vectors. Among the constructs, the convergent construct exhibited potential transcriptional interference through the collision of RNA polymerases. To study design of experiment-guided lycopene biosynthesis in C. glutamicum (levels 1, 2, and 3), the biofoundry-assisted multiple gene assembly was demonstrated as a proof-of-concept by constructing various sub-pathway units (level 2) and pathway units (level 3) for C. glutamicum. The RoboMoClo framework provides an improved MoClo toolkit for laboratory automation in a synthetic biology application.
Collapse
Affiliation(s)
- Dong Hun Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yu Been Heo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Phaneuf PV, Zielinski DC, Yurkovich JT, Johnsen J, Szubin R, Yang L, Kim SH, Schulz S, Wu M, Dalldorf C, Ozdemir E, Lennen RM, Palsson BO, Feist AM. Escherichia coli Data-Driven Strain Design Using Aggregated Adaptive Laboratory Evolution Mutational Data. ACS Synth Biol 2021; 10:3379-3395. [PMID: 34762392 PMCID: PMC8870144 DOI: 10.1021/acssynbio.1c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Microbes are being
engineered for an increasingly large and diverse
set of applications. However, the designing of microbial genomes remains
challenging due to the general complexity of biological systems. Adaptive
Laboratory Evolution (ALE) leverages nature’s problem-solving
processes to generate optimized genotypes currently inaccessible to
rational methods. The large amount of public ALE data now represents
a new opportunity for data-driven strain design. This study describes
how novel strain designs, or genome sequences not yet observed in
ALE experiments or published designs, can be extracted from aggregated
ALE data and demonstrates this by designing, building, and testing
three novel Escherichia coli strains with fitnesses
comparable to ALE mutants. These designs were achieved through a meta-analysis
of aggregated ALE mutations data (63 Escherichia coli K-12 MG1655 based ALE experiments, described by 93 unique environmental
conditions, 357 independent evolutions, and 13 957 observed
mutations), which additionally revealed global ALE mutation trends
that inform on ALE-derived strain design principles. Such informative
trends anticipate ALE-derived strain designs as largely gene-centric,
as opposed to noncoding, and composed of a relatively small number
of beneficial variants (approximately 6). These results demonstrate
how strain design efforts can be enhanced by the meta-analysis of
aggregated ALE data.
Collapse
Affiliation(s)
- Patrick V. Phaneuf
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - James T. Yurkovich
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Josefin Johnsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Lei Yang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Sebastian Schulz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Muyao Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Emre Ozdemir
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Rebecca M. Lennen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Bernhard O. Palsson
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|