1
|
de la Fuente Tagarro C, Martín-González D, De Lucas A, Bordel S, Santos-Beneit F. Current Knowledge on CRISPR Strategies Against Antimicrobial-Resistant Bacteria. Antibiotics (Basel) 2024; 13:1141. [PMID: 39766530 PMCID: PMC11672446 DOI: 10.3390/antibiotics13121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
CRISPR/Cas systems have emerged as valuable tools to approach the problem of antimicrobial resistance by either sensitizing or lysing resistant bacteria or by aiding in antibiotic development, with successful applications across diverse organisms, including bacteria and fungi. CRISPR/Cas systems can target plasmids or the bacterial chromosome of AMR-bacteria, and it is especially necessary to have an efficient entry into the target cells, which can be achieved through nanoparticles or bacteriophages. Regarding antibiotic development and production, though the use of CRISPR/Cas in this field is still modest, there is an untapped reservoir of bacterial and fungal natural products, with over 95% yet to be characterized. In Streptomyces, a key antibiotic-producing bacterial genus, CRISPR/Cas has been successfully used to activate silent biosynthetic gene clusters, leading to the discovery of new antibiotics. CRISPR/Cas is also applicable to non-model bacteria and different species of fungi, making it a versatile tool for natural products discovery. Moreover, CRISPR/Cas-based studies offer insights into metabolic regulation and biosynthetic pathways in both bacteria and fungi, highlighting its utility in understanding genetic regulation and improving industrial strains. In this work, we review ongoing innovations on ways to treat antimicrobial resistances and on antibiotic discovery using CRISPR/Cas platforms, highlighting the role of bacteria and fungi in these processes.
Collapse
Affiliation(s)
- Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| |
Collapse
|
2
|
Zhao X, Zhu C, Gao W, Xie H, Lyu Z, Zhao Q, Li Y. Rational construction of a high-quality and high-efficiency biosynthetic system and fermentation optimization for A82846B based on combinatorial strategies in Amycolatopsis orientalis. Microb Cell Fact 2024; 23:186. [PMID: 38943174 PMCID: PMC11212272 DOI: 10.1186/s12934-024-02464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Oritavancin is a new generation of semi-synthetic glycopeptide antibiotics against Gram-positive bacteria, which served as the first and only antibiotic with a single-dose therapeutic regimen to treat ABSSSI. A naturally occurring glycopeptide A82846B is the direct precursor of oritavancin. However, its application has been hampered by low yields and homologous impurities. This study established a multi-step combinatorial strategy to rationally construct a high-quality and high-efficiency biosynthesis system for A82846B and systematically optimize its fermentation process to break through the bottleneck of microbial fermentation production. RESULTS Firstly, based on the genome sequencing and analysis, we deleted putative competitive pathways and constructed a better A82846B-producing strain with a cleaner metabolic background, increasing A82846B production from 92 to 174 mg/L. Subsequently, the PhiC31 integrase system was introduced based on the CRISPR-Cas12a system. Then, the fermentation level of A82846B was improved to 226 mg/L by over-expressing the pathway-specific regulator StrR via the constructed PhiC31 system. Furthermore, overexpressing glycosyl-synthesis gene evaE enhanced the production to 332 mg/L due to the great conversion of the intermediate to target product. Finally, the scale-up production of A82846B reached 725 mg/L in a 15 L fermenter under fermentation optimization, which is the highest reported yield of A82846B without the generation of homologous impurities. CONCLUSION Under approaches including blocking competitive pathways, inserting site-specific recombination system, overexpressing regulator, overexpressing glycosyl-synthesis gene and optimizing fermentation process, a multi-step combinatorial strategy for the high-level production of A82846B was developed, constructing a high-producing strain AO-6. The combinatorial strategies employed here can be widely applied to improve the fermentation level of other microbial secondary metabolites, providing a reference for constructing an efficient microbial cell factory for high-value natural products.
Collapse
Affiliation(s)
- Xinyi Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Lab for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Chenyang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Lab for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Wenli Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Lab for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Huang Xie
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Lab for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Zhongyuan Lyu
- Institute of Biopharmaceuticals, School of Pharmaceutical Sciences, Taizhou University, Taizhou, 318000, China
| | - Qingwei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Lab for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yongquan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Wang G, Zheng P, Wu D, Chen P. High-Yield Natural Vanillin Production by Amycolatopsis sp. after CRISPR-Cas12a-Mediated Gene Deletion. ACS OMEGA 2023; 8:14113-14121. [PMID: 37091397 PMCID: PMC10116632 DOI: 10.1021/acsomega.3c00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Vanillin is an aromatic compound, which is widely used in food flavoring, beverages, perfumes, and pharmaceuticals. Amycolatopsis sp. is considered a good strain for the production of vanillin from ferulic acid by fermentation; however, its high genomic guanine-cytosine (GC) content (>70%) and low transformation and recombination efficiency limit its genetic modification potential to improve vanillin production. Efficient genome editing of Amycolatopsis sp. has been challenging, but this study developed a CRISPR-Cas12a system for efficient, markerless, and scarless genome editing of Amycolatopsis sp. CCTCC NO: M2011265. A mutant, ΔvdhΔphdB, was obtained by the deletion of two genes coding byproduct enzymes from the vanillin biosynthetic pathway. The gene deletion increased vanillin production from 10.60 g/L (wild-type) to 20.44 g/L and reduced byproduct vanillic acid from 2.45 to 0.15 g/L in a 3 L fed-batch fermentation, markedly enhancing vanillin production and reducing byproduct formation; the mutant has great potential for industrial application.
Collapse
Affiliation(s)
| | - Pu Zheng
- . Phone and Fax: 86-510-85918156
| | | | | |
Collapse
|
4
|
Hu M, Chen S, Ni Y, Wei W, Mao W, Ge M, Qian X. CRISPR/Cas9-mediated genome editing in vancomycin-producing strain Amycolatopsis keratiniphila. Front Bioeng Biotechnol 2023; 11:1141176. [PMID: 36937767 PMCID: PMC10020181 DOI: 10.3389/fbioe.2023.1141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Amycolatopsis is an important source of diverse valuable bioactive natural products. The CRISPR/Cas-mediated gene editing tool has been established in some Amycolatopsis species and has accomplished the deletion of single gene or two genes. The goal of this study was to develop a high-efficient CRISPR/Cas9-mediated genome editing system in vancomycin-producing strain A. keratiniphila HCCB10007 and enhance the production of vancomycin by deleting the large fragments of ECO-0501 BGC. By adopting the promoters of gapdhp and ermE*p which drove the expressions of scocas9 and sgRNA, respectively, the all-in-one editing plasmid by homology-directed repair (HDR) precisely deleted the single gene gtfD and inserted the gene eGFP with the efficiency of 100%. Furthermore, The CRISPR/Cas9-mediated editing system successfully deleted the large fragments of cds13-17 (7.7 kb), cds23 (12.7 kb) and cds22-23 (21.2 kb) in ECO-0501 biosynthetic gene cluster (BGC) with high efficiencies of 81%-97% by selecting the sgRNAs with a suitable PAM sequence. Finally, a larger fragment of cds4-27 (87.5 kb) in ECO-0501 BGC was deleted by a dual-sgRNA strategy. The deletion of the ECO-0501 BGCs revealed a noticeable improvement of vancomycin production, and the mutants, which were deleted the ECO-0501 BGCs of cds13-17, cds22-23 and cds4-27, all achieved a 30%-40% increase in vancomycin yield. Therefore, the successful construction of the CRISPR/Cas9-mediated genome editing system and its application in large fragment deletion in A. keratiniphila HCCB10007 might provide a powerful tool for other Amycolatopsis species.
Collapse
Affiliation(s)
- Mengyi Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Ni
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wei
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Hansen MH, Stegmann E, Cryle MJ. Beyond vancomycin: recent advances in the modification, reengineering, production and discovery of improved glycopeptide antibiotics to tackle multidrug-resistant bacteria. Curr Opin Biotechnol 2022; 77:102767. [PMID: 35933924 DOI: 10.1016/j.copbio.2022.102767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin, are important last-resort antibiotics used to treat multidrug-resistant Gram-positive bacterial infections. Whilst second-generation GPAs - generated through chemical modification of natural GPAs - have proven successful, the emergence of GPA resistance has underlined the need to develop new members of this compound class. Significant recent advances have been made in GPA research, including gaining an in-depth understanding of their biosynthesis, improving titre in production strains, developing new derivatives via novel chemical modifications and identifying a new mode of action for structurally diverse type-V GPAs. Taken together, these advances demonstrate significant untapped potential for the further development of GPAs to tackle the growing threat of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mathias H Hansen
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; EMBL Australia, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia.
| |
Collapse
|