1
|
Park J, Polizzi KM, Kim J, Kim J. Manipulating subcellular protein localization to enhance target protein accumulation in minicells. J Biol Eng 2025; 19:27. [PMID: 40158151 PMCID: PMC11955136 DOI: 10.1186/s13036-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Minicells are chromosome-free derivatives of bacteria formed through irregular cell division. Unlike simplified structures, minicells retain all cellular components of the parent cell except for the chromosome. This feature reduces immunogenic responses, making them advantageous for various biotechnological applications, including chemical production and drug delivery. To effectively utilize minicells, it is essential to ensure the accumulation of target proteins within them, enhancing their efficiency as delivery vehicles. RESULTS In this study, we engineered Escherichia coli by deleting the minCD genes, generating minicell-producing strains, and investigated strategies to enhance protein accumulation within the minicells. Comparative proteomic analysis revealed that minicells retain most parent-cell proteins but exhibit an asymmetric proteome distribution, leading to selective protein enrichment. We demonstrated that heterologous proteins, such as GFP and RFP, accumulate more abundantly in minicells than in parent cells, regardless of expression levels. To further enhance this accumulation, we manipulated protein localization by fusing target proteins to polar localization signals. While proteins fused with PtsI and Tsr exhibited 2.6-fold and 2.8-fold increases in accumulation, respectively, fusion with the heterologous PopZ protein resulted in a remarkable 15-fold increase in protein concentration under low induction conditions. CONCLUSIONS These findings highlight the critical role of spatial protein organization in enhancing the cargo-loading capabilities of minicells. By leveraging polar localization signals, this work provides a robust framework for optimizing minicells as efficient carriers for diverse applications, from therapeutic delivery to industrial biomanufacturing.
Collapse
Grants
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- EP/T005297/1, EP/W00979X/1 EPSRC Adventurous Manufacturing
Collapse
Affiliation(s)
- Junhyeon Park
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juhyun Kim
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Dendene S, Xue S, Mohammedi R, Vieillard A, Nicoud Q, Valette O, Frascella A, Bonnardel A, Le Bars R, Bourge M, Mergaert P, Brilli M, Alunni B, Biondi EG. Sinorhizobium meliloti FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism. Proc Natl Acad Sci U S A 2025; 122:e2412367122. [PMID: 40073061 PMCID: PMC11929396 DOI: 10.1073/pnas.2412367122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Sinorhizobium meliloti is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, S. meliloti undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process. In free-living cells, the master regulator CtrA ensures the progression of cell cycle by activating cell division (controlled by FtsZ) and inhibiting DNA replication, while on the other hand the so far poorly unknown downregulation of CtrA and FtsZ is essential for bacteroid differentiation. Here, we combine cell biology, biochemistry, and bacterial genetics to understand the functions of FcrX, a factor that controls both CtrA and FtsZ in free-living growth and in symbiosis. Depletion of the essential gene fcrX led to abnormally high levels of FtsZ and CtrA and minicell formation. Using multiple complementary techniques, we showed that FcrX may interact with FtsZ and CtrA. Moreover, fcrX transcription is directly controlled by CtrA itself and the FcrX protein displays a cell cycle-dependent pattern. We showed further that FcrX also binds the degradosome complex ClpXP and its adaptors CpdR1 and RcdA, and that CtrA degradation efficiency depends on FcrX. We further showed that, despite weak homology with FliJ-like proteins, only FcrX proteins from closely related species are able to complement S. meliloti fcrX function. Finally, deregulation of FcrX showed abnormal symbiotic behaviors in plants suggesting a putative role of this factor during bacteroid differentiation.
Collapse
Affiliation(s)
- Sara Dendene
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Shuanghong Xue
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Roza Mohammedi
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Adam Vieillard
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Quentin Nicoud
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Odile Valette
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Angela Frascella
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Anna Bonnardel
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| | - Romain Le Bars
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Mickaël Bourge
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Peter Mergaert
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Milan20122, Italy
| | - Benoît Alunni
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Emanuele G. Biondi
- Commissariat à l’énergie atomique et aux énergies alternatives, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette91198, France
- CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Turing Center for Living Systems, Aix-Marseille Université, Marseille13009, France
| |
Collapse
|
3
|
Kozaeva E, Nieto-Domínguez M, Tang KKY, Stammnitz M, Nikel PI. Leveraging Engineered Pseudomonas putida Minicells for Bioconversion of Organic Acids into Short-Chain Methyl Ketones. ACS Synth Biol 2025; 14:257-272. [PMID: 39748701 PMCID: PMC11744930 DOI: 10.1021/acssynbio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium Pseudomonas putida as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone. Pathway optimization identified efficient enzyme variants from Clostridium acetobutylicum and Escherichia coli, tested with both constitutive and inducible expression of the cognate genes. By implementing these optimized pathways in P. putida minicells, which can be prepared through a simple three-step purification protocol, the feedstock was converted into the target short-chain methyl ketones. These results highlight the value of combining morphology and pathway engineering of noncanonical bacterial hosts to establish alternative bioprocesses for toxic chemicals that are difficult to produce by conventional approaches.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kent Kang Yong Tang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | | - Pablo Iván Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
4
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Yang X, Liang Y, Tong S. Advancing cancer treatment: in vivo delivery of therapeutic small noncoding RNAs. Front Mol Biosci 2024; 10:1297413. [PMID: 38234581 PMCID: PMC10791939 DOI: 10.3389/fmolb.2023.1297413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
In recent years, small non-coding RNAs (ncRNAs) have emerged as a new player in the realm of cancer therapeutics. Their unique capacity to directly modulate genetic networks and target oncogenes positions them as valuable complements to existing small-molecule drugs. Concurrently, the advancement of small ncRNA-based therapeutics has rekindled the pursuit of efficacious in vivo delivery strategies. In this review, we provide an overview of the most current clinical and preclinical studies in the field of small ncRNA-based cancer therapeutics. Furthermore, we shed light on the pivotal challenges hindering the successful translation of these promising therapies into clinical practice, with a specific focus on delivery methods, aiming to stimulate innovative approaches to address this foundational aspect of cancer treatment.
Collapse
Affiliation(s)
- Xiaoyue Yang
- F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Ying Liang
- New York Blood Center, New York, NY, United States
| | - Sheng Tong
- F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Ma Y, Zhu G, Feng L, Jiang S, Xiang Q, Wang J. Efficient Cytotoxicity of Recombinant Azurin in Escherichia coli Nissle 1917-Derived Minicells against Colon Cancer Cells. Bioengineering (Basel) 2023; 10:1188. [PMID: 37892918 PMCID: PMC10603951 DOI: 10.3390/bioengineering10101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 10/29/2023] Open
Abstract
Compared to chemical drugs, therapeutic proteins exhibit higher specificity and activity and are generally well-tolerated by the human body. However, the limitations, such as poor stability both in vivo and in vitro as well as difficulties in penetrating cell membranes, hinder their widespread application. To overcome the challenges, a highly efficient protocol was developed and implemented for the recombinant expression of the therapeutic protein azurin and secretion into minicells derived from probiotic Escherichia coli Nissle 1917. The novel coupled production with a delivery system of therapeutic proteins based on minicells was obtained through purification to enhance protein activity, circulation characteristics, and targeting specificity. This protein drug carrier integrates the production of carrier materials and the loading of expression proteins. The drug carrier also protects the encapsulated polypeptide drugs from enzymatic or gastric acid degradation until they are released. Escherichia coli Nissle 1917-derived minicells have natural targeting to colon cancer cells, low toxicity, and can accumulate for a long time after penetrating tumor tissue. This self-produced protein drug delivery system simplified the process of protein preparation, and its inhibitory effect on different types of colon cancer cells was verified by CCK-8 cytotoxicity assay, cancer cell invasion, and migration assay. This work provided a simple method to prepare minicell drug delivery systems for protein drug production and a novel approach for the transport of recombinant protein drugs.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Guanshu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shoujin Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|