1
|
Michael Kormaník J, Herman D, Andris E, Culka M, Gutten O, Kožíšek M, Bednárová L, Srb P, Veverka V, Rulíšek L. Design of Zn-Binding Peptide(s) from Protein Fragments. Chembiochem 2025; 26:e202401014. [PMID: 39937972 PMCID: PMC12002108 DOI: 10.1002/cbic.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/14/2025]
Abstract
We designed a minimalistic zinc(II)-binding peptide featuring the Cys2His2 zinc-finger motif. To this aim, several tens of thousands of (His/Cys)-Xn-(His/Cys) protein fragments (n=2-20) were first extracted from the 3D protein structures deposited in Protein Data Bank (PDB). Based on geometrical constraints positioning two Cys (C) and two His (H) side chains at the vertices of a tetrahedron, approximately 22 000 sequences of the (H/C)-Xi-(H/C)-Xj-(H/C)-Xk-(H/C) type, satisfying Nmetal-binding H=Nmetal-binding C=2, were processed. Several other criteria, such as the secondary structure content and predicted fold stability, were then used to select the best candidates. To prove the viability of the computational design experimentally, three peptides were synthesized and subjected to isothermal calorimetry (ITC) measurements to determine the binding constants with Zn2+, including the entropy and enthalpy terms. For the strongest Zn2+ ions binding peptide, P1, the dissociation constant was shown to be in the nanomolar range (KD=~220 nM; corresponding to ΔGbind=-9.1 kcal mol-1). In addition, ITC showed that the [P1 : Zn2+] complex forms in 1 : 1 stoichiometry and two protons are released upon binding, which suggests that the zinc coordination involves both cysteines. NMR experiments also indicated that the structure of the [P1 : Zn2+] complex might be quite similar to the computationally predicted one. In summary, our proof-of-principle study highlights the usefulness of our computational protocol for designing novel metal-binding peptides.
Collapse
Affiliation(s)
- Ján Michael Kormaník
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Daniel Herman
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| |
Collapse
|
2
|
Häge F, Schwan M, Conde González MR, Huber J, Germer S, Macrì M, Kopp J, Sinning I, Thomas F. Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity. ACS CENTRAL SCIENCE 2025; 11:157-166. [PMID: 39866698 PMCID: PMC11758493 DOI: 10.1021/acscentsci.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu2+-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography. The miniprotein was found to be a strand-swapped dimer with an unusual coupled binuclear Type 2-like copper center in each protomer. SO1-Cu was found to be SOD-active with an activity only 1 order of magnitude lower than that of natural SOD enzymes and 1 to 2 orders of magnitude higher than that of other low-complexity SOD protein models of similar size. This serendipitous design provides us with a new structural template for future designs of binuclear metalloproteins with different metal ions and functions.
Collapse
Affiliation(s)
- Florian
R. Häge
- Institute
of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Merlin Schwan
- Biochemistry
Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Marcos Rafael Conde González
- Institute
of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Jonas Huber
- Institute
of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Stefan Germer
- Institute
of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matilde Macrì
- Institute
of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jürgen Kopp
- Biochemistry
Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry
Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Franziska Thomas
- Institute
of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Learte-Aymamí S, Martínez-Castro L, González-González C, Condeminas M, Martin-Malpartida P, Tomás-Gamasa M, Baúlde S, Couceiro JR, Maréchal JD, Macias MJ, Mascareñas JL, Vázquez ME. De Novo Engineering of Pd-Metalloproteins and Their Use as Intracellular Catalysts. JACS AU 2024; 4:2630-2639. [PMID: 39055146 PMCID: PMC11267534 DOI: 10.1021/jacsau.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024]
Abstract
The development of transition metal-based catalytic platforms that promote bioorthogonal reactions inside living cells remains a major challenge in chemical biology. This is particularly true for palladium-based catalysts, which are very powerful in organic synthesis but perform poorly in the cellular environment, mainly due to their rapid deactivation. We now demonstrate that grafting Pd(II) complexes into engineered β-sheets of a model WW domain results in cell-compatible palladominiproteins that effectively catalyze depropargylation reactions inside HeLa cells. The concave shape of the WW domain β-sheet proved particularly suitable for accommodating the metal center and protecting it from rapid deactivation in the cellular environment. A thorough NMR and computational study confirmed the formation of the metal-stapled peptides and allowed us to propose a three-dimensional structure for this novel metalloprotein motif.
Collapse
Affiliation(s)
- Soraya Learte-Aymamí
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Laura Martínez-Castro
- Insilichem,
Departament de Química, Universitat
Autónoma de Barcelona, Cerdanyola 08193, Spain
| | - Carmen González-González
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Miriam Condeminas
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, Barcelona 08028, Spain
- Academic
institutional affiliation:Department of Medicine and Life Sciences, Universitat Pompeu Fabra (MELIS-UPF), Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Pau Martin-Malpartida
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, Barcelona 08028, Spain
| | - María Tomás-Gamasa
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Sandra Baúlde
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - José R. Couceiro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Jean-Didier Maréchal
- Insilichem,
Departament de Química, Universitat
Autónoma de Barcelona, Cerdanyola 08193, Spain
| | - Maria J. Macias
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, Barcelona 08028, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José L. Mascareñas
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - M. Eugenio Vázquez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| |
Collapse
|
4
|
Lindner C, Friemel A, Schwegler N, Timmermann L, Pham TL, Reusche V, Kovermann M, Thomas F. Thermostable WW-Domain Scaffold to Design Functional β-Sheet Miniproteins. J Am Chem Soc 2024. [PMID: 38853610 DOI: 10.1021/jacs.4c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
There has been a recent surge in the design of miniproteins for medicinal chemistry, biomaterial design, or synthetic biology. In particular, there is an interest in peptide scaffolds that fold reliably, predictably, and with solid stability. In this article, we present the design of a highly thermostable WW domain, a three-stranded β-sheet motif, with a superior melting temperature of about 90 °C to serve as a core scaffold onto which receptor-like properties can be grafted. We have performed specific rounds of sequence iteration on a WW-domain consensus sequence to decipher sequence positions that affect structural and, thus, thermal stability. We identified a sequence-structure relationship that yields a highly thermostable WW-domain scaffold. High-resolution NMR spectroscopy was applied, which enabled the identification of structural features at the atomic scale that contribute to this high thermostability. Finally, we grafted the binding motifs of the three WW-domain groups─Group I, Group II/III, and Group IV─and organophosphate and metal binding onto the highly thermostable WW-domain scaffold and obtained thermostable de novo WW domains that indeed display the different binding modes that were intended. The organophosphate-binding WW domains exhibit melting temperatures that are up to 34 K higher than previously reported top-down designs. These results impressively demonstrate that the highly thermostable WW-domain core scaffold is a solid platform for the design of discrete and reliably folding functional β-sheet peptide miniproteins, providing an essential addition to the toolbox of peptide scaffolds previously used in synthetic biology and material design.
Collapse
Affiliation(s)
- Christina Lindner
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Anke Friemel
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Niklas Schwegler
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Lisa Timmermann
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Vanessa Reusche
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Michael Kovermann
- Physical Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Marinova P, Tamahkyarova K. Synthesis and Biological Activities of Some Metal Complexes of Peptides: A Review. BIOTECH 2024; 13:9. [PMID: 38651489 PMCID: PMC11036290 DOI: 10.3390/biotech13020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Peptides, both natural and synthetic, are well suited for a wide range of purposes and offer versatile applications in different fields such as biocatalysts, injectable hydrogels, tumor treatment, and drug delivery. The research of the better part of the cited papers was conducted using various database platforms such as MetalPDB. The rising prominence of therapeutic peptides encompasses anticancer, antiviral, antimicrobial, and anti-neurodegenerative properties. The metals Na, K, Mg, Ca, Fe, Mn, Co, Cu, Zn, and Mo are ten of the twenty elements that are considered essential for life. Crucial for understanding the biological role of metals is the exploration of metal-bound proteins and peptides. Aside from essential metals, there are other non-essential metals that also interact biologically, exhibiting either therapeutic or toxic effects. Irregularities in metal binding contribute to diseases like Alzheimer's, neurodegenerative disorders, Wilson's, and Menkes disease. Certain metal complexes have potential applications as radiopharmaceuticals. The examination of these complexes was achieved by preforming UV-Vis, IR, EPR, NMR spectroscopy, and X-ray analysis. This summary, although unable to cover all of the studies in the field, offers a review of the ongoing experimentation and is a basis for new ideas, as well as strategies to explore and gain knowledge from the extensive realm of peptide-chelated metals and biotechnologies.
Collapse
Affiliation(s)
- Petja Marinova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, “Tzar Assen” Str. 24, 4000 Plovdiv, Bulgaria;
| | | |
Collapse
|
6
|
Pham TL, Thomas F. Design of Functional Globular β-Sheet Miniproteins. Chembiochem 2024; 25:e202300745. [PMID: 38275210 DOI: 10.1002/cbic.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
The design of discrete β-sheet peptides is far less advanced than e. g. the design of α-helical peptides. The reputation of β-sheet peptides as being poorly soluble and aggregation-prone often hinders active design efforts. Here, we show that this reputation is unfounded. We demonstrate this by looking at the β-hairpin and WW domain. Their structure and folding have been extensively studied and they have long served as model systems to investigate protein folding and folding kinetics. The resulting fundamental understanding has led to the development of hyperstable β-sheet scaffolds that fold at temperatures of 100 °C or high concentrations of denaturants. These have been used to design functional miniproteins with protein or nucleic acid binding properties, in some cases with such success that medical applications are conceivable. The β-sheet scaffolds are not always completely rigid, but can be specifically designed to respond to changes in pH, redox potential or presence of metal ions. Some engineered β-sheet peptides also exhibit catalytic properties, although not comparable to those of natural proteins. Previous reviews have focused on the design of stably folded and non-aggregating β-sheet sequences. In our review, we now also address design strategies to obtain functional miniproteins from β-sheet folding motifs.
Collapse
Affiliation(s)
- Truc Lam Pham
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Pham TL, Conde González MR, Fazliev S, Kishore A, Comba P, Thomas F. Relationship of Thermostability and Binding Affinity in Metal-binding WW-Domain Minireceptors. Chembiochem 2024; 25:e202300715. [PMID: 38127995 DOI: 10.1002/cbic.202300715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
The design of metallo-miniproteins advances our understanding of the structural and functional roles of metals in proteins. We recently designed a metal-binding WW domain, WW-CA-Nle, which displays three histidine residues on its surface for coordination of divalent metals Ni(II), Zn(II) and Cu(II). However, WW-CA-Nle is a molten globule in the apo state and thus showed only moderate binding affinities with Kd values in the μM regime. In this report, we hypothesize that improved thermal stability of the apo state of the metal binding WW-domain scaffold should lead to improved preorganization of the metal-binding site and consequently to higher metal-binding affinities. By redesigning WW-CA-Nle, we obtained WW-CA variants, WW-CA-min and WW-CA-ANG, which were fully folded in the apo states and displayed moderate to excellent thermostabilities in the apo and holo states. We were able to show that the improved thermal stabilities led to improved metal binding, which was reflected in Kd values that were at least one order of magnitude lower compared to WW-CA-Nle. EPR spectroscopy and ITC measurements revealed a better defined and predisposed metal binding site in WW-CA-ANG.
Collapse
Affiliation(s)
- Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcos R Conde González
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Max Planck School Matter to Life
| | - Sunnatullo Fazliev
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Max Planck School Matter to Life
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Agi Kishore
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Max Planck School Matter to Life
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Kokollari A, Werner M, Lindner C, Pham TL, Thomas F. Rapid On-Resin N-Formylation of Peptides as One-Pot Reaction. Chembiochem 2023; 24:e202300571. [PMID: 37695727 DOI: 10.1002/cbic.202300571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
N-formylation is a common pre- and post-translational modification of the N-terminus or the lysine side chain of peptides and proteins that plays a role in the initiation of immune responses, gene expression, or epigenetics. Despite its high biological relevance, protocols for the chemical N-formylation of synthetic peptides are scarce. The few available methods are elaborate in their execution and the yields are highly sequence-dependent. We present a rapid, easy-to-use one-pot procedure that runs at room temperature and can be used to formylate protected peptides at both the N-terminus and the lysine side chain on the resin in near-quantitative yields. Only insensitive, storage-stable standard chemicals - formic acid, acetic anhydride, pyridine and DMF - are used. Formylation works for both short and long peptides of up to 34 amino acids and over the spectrum of canonical amino acids.
Collapse
Affiliation(s)
- Agon Kokollari
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marius Werner
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Department of Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christina Lindner
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Department of Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Pham TL, Fazliev S, Baur P, Comba P, Thomas F. An Engineered β-Hairpin Peptide Forming Thermostable Complexes with Zn II , Ni II , and Cu II through a His 3 Site. Chembiochem 2023; 24:e202200588. [PMID: 36445805 PMCID: PMC10107957 DOI: 10.1002/cbic.202200588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
The three-dimensional structure of a peptide, which determines its function, can denature at elevated temperatures, in the presence of chaotropic reagents, or in organic solvents. These factors limit the applicability of peptides. Herein, we present an engineered β-hairpin peptide containing a His3 site that forms complexes with ZnII , NiII , and CuII . Circular dichroism spectroscopy shows that the peptide-metal complexes exhibit melting temperatures up to 80 °C and remain folded in 6 M guanidine hydrochloride as well as in organic solvents. Intrinsic fluorescence titration experiments were used to determine the dissociation constants of metal binding in the nano- to sub-nanomolar range. The coordination geometry of the peptide-CuII complex was studied by EPR spectroscopy, and a distorted square planar coordination geometry with weak interactions to axial ligands was revealed. Due to their impressive stability, the presented peptide-metal complexes open up interesting fields of application, such as the development of a new class of peptide-metal catalysts for stereoselective organic synthesis or the directed design of extremophilic β-sheet peptides.
Collapse
Affiliation(s)
- Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sunnatullo Fazliev
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Philipp Baur
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Int J Mol Sci 2022; 23:ijms232415957. [PMID: 36555599 PMCID: PMC9782655 DOI: 10.3390/ijms232415957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metal chelation can provide structural stability and form reactive centers in metalloproteins. Approximately one third of known protein structures are metalloproteins, and metal binding, or the lack thereof, is often implicated in disease, making it necessary to be able to study these systems in detail. Peptide-metal complexes are both present in nature and can provide a means to focus on the binding region of a protein and control experimental variables to a high degree. Structural studies of peptide complexes with metal ions by nuclear magnetic resonance (NMR) were surveyed for all the essential metal complexes and many non-essential metal complexes. The various methods used to study each metal ion are presented together with examples of recent research. Many of these metal systems have been individually reviewed and this current overview of NMR studies of metallopeptide complexes aims to provide a basis for inspiration from structural studies and methodology applied in the field.
Collapse
|
11
|
Werner M, Pampel J, Pham TL, Thomas F. Late-Stage Functionalisation of Peptides on the Solid Phase by an Iodination-Substitution Approach. Chemistry 2022; 28:e202201339. [PMID: 35700354 PMCID: PMC9545490 DOI: 10.1002/chem.202201339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/20/2022]
Abstract
The functionalisation of peptides at a late synthesis stage holds great potential, for example, for the synthesis of peptide pharmaceuticals, fluorescent biosensors or peptidomimetics. Here we describe an on-resin iodination-substitution reaction sequence on homoserine that is also suitable for peptide modification in a combinatorial format. The reaction sequence is accessible to a wide range of sulfur nucleophiles with various functional groups including boronic acids, hydroxy groups or aromatic amines. In this way, methionine-like thioethers or thioesters and thiosulfonates are accessible. Next to sulfur nucleophiles, selenols, pyridines and carboxylic acids were successfully used as nucleophiles, whereas phenols did not react. The late-stage iodination-substitution approach is not only applicable to short peptides but also to the more complex 34-amino-acid WW domains. We applied this strategy to introduce 7-mercapto-4-methylcoumarin into a switchable ZnII responsive WW domain to design an iFRET-based ZnII sensor.
Collapse
Affiliation(s)
- Marius Werner
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
- Department of Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Julius Pampel
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Truc Lam Pham
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
12
|
Neitz H, Paul NB, Häge FR, Lindner C, Graebner R, Kovermann M, Thomas F. Identification of novel functional mini-receptors by combinatorial screening of split-WW domains. Chem Sci 2022; 13:9079-9090. [PMID: 36091217 PMCID: PMC9365081 DOI: 10.1039/d2sc01078j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
β-Sheet motifs such as the WW domain are increasingly being explored as building blocks for synthetic biological applications. Since the sequence-structure relationships of β-sheet motifs are generally complex compared to the well-studied α-helical coiled coil (CC), other approaches such as combinatorial screening should be included to vary the function of the peptide. In this study, we present a combinatorial approach to identify novel functional mini-proteins based on the WW-domain scaffold, which takes advantage of the successful reconstitution of the fragmented WW domain of hPin1 (hPin1WW) by CC association. Fragmentation of hPin1WW was performed in both loop 1 (CC-hPin1WW-L1) and loop 2 (CC-hPin1WW-L2), and the respective fragments were linked to the strands of an antiparallel heterodimeric CC. Structural analysis by CD and NMR spectroscopy revealed structural reconstitution of the WW-domain scaffold only in CC-hPin1WW-L1, but not in CC-hPin1WW-L2. Furthermore, by using 1H-15N HSQC NMR, fluorescence and CD spectroscopy, we demonstrated that binding properties of fragmented hPin1WW in CC-hPin1WW-L1 were fully restored by CC association. To demonstrate the power of this approach as a combinatorial screening platform, we synthesized a four-by-six library of N- and C-terminal hPin1WW-CC peptide fragments that was screened for a WW domain that preferentially binds to ATP over cAMP, phophocholine, or IP6. Using this screening platform, we identified one WW domain, which specifically binds ATP, and a phosphorylcholine-specific WW-based mini-receptor, both having binding dissociation constants in the lower micromolar range.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg Am Hubland Würzburg 97074 Germany
| | - Niels Benjamin Paul
- Institute of Organic and Biomolecular Chemistry, University of Göttingen Tammannstr. 2 Göttingen 37077 Germany
| | - Florian R Häge
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Christina Lindner
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Roman Graebner
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz Universitätsstraße 10 Konstanz 78457 Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| |
Collapse
|