1
|
Du F, Hang Y, Zhang F, Li X, Zheng Y, Zhang Z, Ma W, Sun X. Improving Precursor Supply and Optimizing the Fermentation Process for High-Level Production of Docosapentaenoic Acid in Yarrowia Lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40240149 DOI: 10.1021/acs.jafc.5c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Docosapentaenoic acid (DPA) is widely applied in medicine and health products because of its important physiological functions. Using microbial cell factories for DPA production is considered a viable alternative to extracting DPA from seal oil. In this study, an engineering strategy for the efficient production of DPA was developed. First, the DPA biosynthesis pathway was successfully established in Yarrowia lipolytica. Then, the increase of acetyl-CoA by engineering citrate metabolism and malonyl-CoA by introducing a new orthogonal malonyl-CoA synthesis pathway was to further enhance DPA production. Furthermore, overexpression of glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME) enhanced NADPH availability. Finally, by optimizing the fermentation conditions, the DPA content of the engineered strain reached 40.0%, and the yield reached 13.0 g/L in the 5 L bioreactor, representing the highest levels reported so far in Y. lipolytica. This study provides a promising strategy to construct microbial cell factories for fatty acid biosynthesis.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yiwen Hang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yi Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xiaoman Sun
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
2
|
Zhu Y, Liu J, Sun L, Liu M, Qi Q, Hou J. Development of genetic markers in Yarrowia lipolytica. Appl Microbiol Biotechnol 2024; 108:14. [PMID: 38170308 DOI: 10.1007/s00253-023-12835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 01/05/2024]
Abstract
The oleaginous yeast Yarrowia lipolytica represents a potential microbial cell factory for the recombinant production of various valuable products. Currently, the commonly used selection markers for transformation in Y. lipolytica are limited, and successive genetic manipulations are often restricted by the number of available selection markers. In our study, we developed a dominant marker, dsdA, which encodes a D-serine deaminase for genetic manipulation in Y. lipolytica. In Y. lipolytica, this marker confers the ability to use D-serine as a nitrogen source. In addition, the selection conditions of several infrequently used dominant markers including bleoR (zeocin resistance), kanMX (G418 resistance), and guaB (mycophenolic acid resistance) were also analyzed. Our results demonstrated that these selection markers can be used for the genetic manipulation of Y. lipolytica and their selection conditions were different for various strains. Ultimately, the selection markers tested here will be useful to expand the genetic toolbox of Y. lipolytica. KEY POINTS: • The dsdA from Escherichia coli was developed as a dominant marker. • The applicability of several resistance markers in Y. lipolytica was determined. • We introduced the Cre/mutant lox system for marker recycling.
Collapse
Affiliation(s)
- Yamin Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Jianhui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Lingxuan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
3
|
Sun S, Wang X, Cheng S, Lei Y, Sun W, Wang K, Li Z. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121062. [PMID: 38735068 DOI: 10.1016/j.jenvman.2024.121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
High value-added products from organic waste fermentation have garnered increasing concern in modern society. VFAs are short-chain fatty acids, produced as intermediate products during the anaerobic fermentation of organic matter. VFAs can serve as an essential organic carbon source to produce substitutable fuels, microbial fats and oils, and synthetic biodegradable plastics et al. Extracting VFAs from the fermentation broths is a challenging task as the composition of suspensions is rather complex. In this paper, a comprehensive review of methods for VFAs production, extraction and separation are provided. Firstly, the methods to enhance VFAs production and significant operating parameters are briefly reviewed. Secondly, the evaluation and detailed discussion of various VFAs extraction and separation technologies, including membrane separation, complex extraction, and adsorption methods, are presented, highlighting their specific advantages and limitations. Finally, the challenges encountered by different separation technologies and novel approaches to enhance process performance are highlighted, providing theoretical guidance for recycling VFAs from organic wastes efficiently.
Collapse
Affiliation(s)
- Shushuang Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Xuemei Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China.
| | - Shikun Cheng
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Yuxin Lei
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Wenjin Sun
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Kexin Wang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China
| | - Zifu Li
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, PR China; International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
4
|
Koh HG, Yook S, Oh H, Rao CV, Jin YS. Toward rapid and efficient utilization of nonconventional substrates by nonconventional yeast strains. Curr Opin Biotechnol 2024; 85:103059. [PMID: 38171048 DOI: 10.1016/j.copbio.2023.103059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Economic and sustainable production of biofuels and chemicals necessitates utilizing abundant and inexpensive lignocellulosic biomass. Yet, Saccharomyces cerevisiae, a workhorse strain for industrial biotechnology based on starch and sugarcane-derived sugars, is not suitable for lignocellulosic bioconversion due to a lack of pentose metabolic pathways and severe inhibition by toxic inhibitors in cellulosic hydrolysates. This review underscores the potential of nonconventional yeast strains, specifically Yarrowia lipolytica and Rhodotorula toruloides, for converting underutilized carbon sources, such as xylose and acetate, into high-value products. Multi-omics studies with nonconventional yeast have elucidated the structure and regulation of metabolic pathways for efficient and rapid utilization of xylose and acetate. The review delves into the advantages of using xylose and acetate for producing biofuels and chemicals. Collectively, value-added biotransformation of nonconventional substrates by nonconventional yeast strains is a promising strategy to improve both economics and sustainability of bioproduction.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyunjoon Oh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Yang Q, Ran Y, Guo S, Li F, Xiang D, Cao Y, Qiao D, Xu H, Cao Y. Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3. Int J Biol Macromol 2023; 253:127008. [PMID: 37844810 DOI: 10.1016/j.ijbiomac.2023.127008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengtao Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Fazhi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dongyou Xiang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
6
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
7
|
Huang C, Chen Y, Cheng S, Li M, Wang L, Cheng M, Li F, Cao Y, Song H. Enhanced acetate utilization for value-added chemicals production in Yarrowia lipolytica by integration of metabolic engineering and microbial electrosynthesis. Biotechnol Bioeng 2023; 120:3013-3024. [PMID: 37306471 DOI: 10.1002/bit.28465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.
Collapse
Affiliation(s)
- Congcong Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Shuai Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mengxu Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Meijie Cheng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Nurwono G, O'Keeffe S, Liu N, Park JO. Sustainable metabolic engineering requires a perfect trifecta. Curr Opin Biotechnol 2023; 83:102983. [PMID: 37573625 PMCID: PMC10960266 DOI: 10.1016/j.copbio.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
The versatility of cellular metabolism in converting various substrates to products inspires sustainable alternatives to conventional chemical processes. Metabolism can be engineered to maximize the yield, rate, and titer of product generation. However, the numerous combinations of substrate, product, and organism make metabolic engineering projects difficult to navigate. A perfect trifecta of substrate, product, and organism is prerequisite for an environmentally and economically sustainable metabolic engineering endeavor. As a step toward this endeavor, we propose a reverse engineering strategy that starts with product selection, followed by substrate and organism pairing. While a large bioproduct space has been explored, the top-ten compounds have been synthesized mainly using glucose and model organisms. Unconventional feedstocks (e.g. hemicellulosic sugars and CO2) and non-model organisms are increasingly gaining traction for advanced bioproduct synthesis due to their specialized metabolic modes. Judicious selection of the substrate-organism-product combination will illuminate the untapped territory of sustainable metabolic engineering.
Collapse
Affiliation(s)
| | - Samantha O'Keeffe
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Nian Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Jia D, Deng W, Hu P, Jiang W, Gu Y. Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications. BIORESOUR BIOPROCESS 2023; 10:61. [PMID: 38647965 PMCID: PMC10992200 DOI: 10.1186/s40643-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 04/25/2024] Open
Abstract
In the context of the rapid development of low-carbon economy, there has been increasing interest in utilizing naturally abundant and cost-effective one-carbon (C1) substrates for sustainable production of chemicals and fuels. Moorella thermoacetica, a model acetogenic bacterium, has attracted significant attention due to its ability to utilize carbon dioxide (CO2) and carbon monoxide (CO) via the Wood-Ljungdahl (WL) pathway, thereby showing great potential for the utilization of C1 gases. However, natural strains of M. thermoacetica are not yet fully suitable for industrial applications due to their limitations in carbon assimilation and conversion efficiency as well as limited product range. Over the past decade, progresses have been made in the development of genetic tools for M. thermoacetica, accelerating the understanding and modification of this acetogen. Here, we summarize the physiological and metabolic characteristics of M. thermoacetica and review the recent advances in engineering this bacterium. Finally, we propose the future directions for exploring the real potential of M. thermoacetica in industrial applications.
Collapse
Affiliation(s)
- Dechen Jia
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangshuying Deng
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Hu
- Shanghai GTLB Biotech Co., Ltd, 1688 North Guoquan Road, Shanghai, 200438, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
10
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Romero-Aguilar L, Hernández-Morfín KD, Guerra-Sánchez G, Pardo JP. Metabolic Changes and Antioxidant Response in Ustilago maydis Grown in Acetate. J Fungi (Basel) 2023; 9:749. [PMID: 37504737 PMCID: PMC10381545 DOI: 10.3390/jof9070749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Ustilago maydis is an important model to study intermediary and mitochondrial metabolism, among other processes. U. maydis can grow, at very different rates, on glucose, lactate, glycerol, and ethanol as carbon sources. Under nitrogen starvation and glucose as the only carbon source, this fungus synthesizes and accumulates neutral lipids in the form of lipid droplets (LD). In this work, we studied the accumulation of triacylglycerols in cells cultured in a medium containing acetate, a direct precursor of the acetyl-CoA required for the synthesis of fatty acids. The metabolic adaptation of cells to acetate was studied by measuring the activities of key enzymes involved in glycolysis, gluconeogenesis, and the pentose phosphate pathways. Since growth on acetate induces oxidative stress, the activities of some antioxidant enzymes were also assayed. The results show that cells grown in acetate plus nitrate did not increase the amount of LD, but increased the activities of glutathione reductase, glutathione peroxidase, catalase, and superoxide dismutase, suggesting a higher production of reactive oxygen species in cells growing in acetate. The phosphofructokinase-1 (PFK1) was the enzyme with the lowest specific activity in the glycolytic pathway, suggesting that PFK1 controls the flux of glycolysis. As expected, the activity of the phosphoenolpyruvate carboxykinase, a gluconeogenic enzyme, was present only in the acetate condition. In summary, in the presence of acetate as the only carbon source, U. maydis synthesized fatty acids, which were directed into the production of phospholipids and neutral lipids for biomass generation, but without any excessive accumulation of LD.
Collapse
Affiliation(s)
- Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| | - Katia Daniela Hernández-Morfín
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Guadalupe Guerra-Sánchez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Santo Tomás, Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
12
|
Sun Y, Zhang T, Lu B, Li X, Jiang L. Application of cofactors in the regulation of microbial metabolism: A state of the art review. Front Microbiol 2023; 14:1145784. [PMID: 37113222 PMCID: PMC10126289 DOI: 10.3389/fmicb.2023.1145784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cofactors are crucial chemicals that maintain cellular redox balance and drive the cell to do synthetic and catabolic reactions. They are involved in practically all enzymatic activities that occur in live cells. It has been a hot research topic in recent years to manage their concentrations and forms in microbial cells by using appropriate techniques to obtain more high-quality target products. In this review, we first summarize the physiological functions of common cofactors, and give a brief overview of common cofactors acetyl coenzyme A, NAD(P)H/NAD(P)+, and ATP/ADP; then we provide a detailed introduction of intracellular cofactor regeneration pathways, review the regulation of cofactor forms and concentrations by molecular biological means, and review the existing regulatory strategies of microbial cellular cofactors and their application progress, to maximize and rapidly direct the metabolic flux to target metabolites. Finally, we speculate on the future of cofactor engineering applications in cell factories. Graphical Abstract.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ting Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Bingqian Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
13
|
Ricci L, Seifert A, Bernacchi S, Fino D, Pirri CF, Re A. Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production. Microb Biotechnol 2023; 16:218-237. [PMID: 36464980 PMCID: PMC9871533 DOI: 10.1111/1751-7915.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2022] Open
Abstract
Carbon dioxide (CO2 ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H2 -dependent CO2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double-stage biotechnological production processes that use CO2 as sole carbon feedstock and H2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two-stage scheme foresees, in the first stage, the catalytic transformation of CO2 into C1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.
Collapse
Affiliation(s)
- Luca Ricci
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | | | | | - Debora Fino
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Candido Fabrizio Pirri
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Angela Re
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| |
Collapse
|
14
|
Gong G, Wu B, Liu L, Li J, Zhu Q, He M, Hu G. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals. ENGINEERING MICROBIOLOGY 2022; 2:100036. [PMID: 39628702 PMCID: PMC11610983 DOI: 10.1016/j.engmic.2022.100036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2024]
Abstract
The production of biofuels and biochemicals derived from microbial fermentation has received a lot of attention and interest in light of concerns about the depletion of fossil fuel resources and climatic degeneration. However, the economic viability of feedstocks for biological conversion remains a barrier, urging researchers to develop renewable and sustainable low-cost carbon sources for future bioindustries. Owing to the numerous advantages, acetate has been regarded as a promising feedstock targeting the production of acetyl-CoA-derived chemicals. This review aims to highlight the potential of acetate as a building block in industrial biotechnology for the production of bio-based chemicals with metabolic engineering. Different alternative approaches and routes comprised of lignocellulosic biomass, waste streams, and C1 gas for acetate generation are briefly described and evaluated. Then, a thorough explanation of the metabolic pathway for biotechnological acetate conversion, cellular transport, and toxin tolerance is described. Particularly, current developments in metabolic engineering of the manufacture of biochemicals from acetate are summarized in detail, with various microbial cell factories and strategies proposed to improve acetate assimilation and enhance product formation. Challenges and future development for acetate generation and assimilation as well as chemicals production from acetate is eventually shown. This review provides an overview of the current status of acetate utilization and proves the great potential of acetate with metabolic engineering in industrial biotechnology.
Collapse
Affiliation(s)
| | | | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Qili Zhu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| |
Collapse
|
15
|
Gong G, Wu B, Liu L, Li J, He M, Hu G. Enhanced biomass and lipid production by light exposure with mixed culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source. BIORESOURCE TECHNOLOGY 2022; 364:128139. [PMID: 36252765 DOI: 10.1016/j.biortech.2022.128139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Microbial biomass and lipid production with mixed-culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source was investigated. Synergistic effect of mixed-culture using 20 g/L acetate significantly promoted cell growth and acetate utilization efficiency. Increasing the proportion of algae in co-culture was beneficial for biomass and lipid accumulation and the optimal ratio of yeast/algae was 1:2. Light exposure further enhanced biomass and lipid titer with 6.9 g/L biomass and 2.6 g/L lipid (38.3 % lipid content) obtained in a 5L bioreactor. The results of lipid classes and fatty acid profiles moreover indicated that more neutral lipids and linolenic acid were synthesized in mixed-culture under light exposure condition, suggesting the great potential in applications of biofuels production. This study provided new insight and strategy for economical microbial biomass and lipid production by light-exposed mixed-culture using inexpensive acetate as carbon source.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
16
|
New roles for Yarrowia lipolytica in molecules synthesis and biocontrol. Appl Microbiol Biotechnol 2022; 106:7397-7416. [PMID: 36241927 DOI: 10.1007/s00253-022-12227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
Abstract
Reprogramming of host metabolism is a common strategy for improving desired compounds in host cells and is essential to generate overproducing strains in biotechnology. As a promising feedstock converter, Yarrowia lipolytica has been engineered to extend its bioproduction ability related to the synthesis of new value-added molecules relevant to human food and disease treatment. New synthetic tools have been reported and new enzymes with biotechnological importance are recovered. Additionally, metabolic events occurring during substrate utilization and recombinant protein production have been elucidated. Its contributions as feed and in controlling disease in the food industry have also been provided. Likewise, the recent abilities of Yarrowia lipolytica in the bioconversion of food waste into single-cell protein have been reported. These aforementioned events made the novelty of this review compared to the existing ones on this oleaginous yeast. KEY POINTS: • The production of biolipids by the heterotrophic yeast Yarrowia lipolytica is examined. • A Summary of information concerning new value-added molecules has been highlighted. • Special focus on the importance of Yarrowia lipolytica in regulating the immune system has been provided.
Collapse
|
17
|
Narisetty V, Prabhu AA, Bommareddy RR, Cox R, Agrawal D, Misra A, Haider MA, Bhatnagar A, Pandey A, Kumar V. Development of Hypertolerant Strain of Yarrowia lipolytica Accumulating Succinic Acid Using High Levels of Acetate. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:10858-10869. [PMID: 36035440 PMCID: PMC9400109 DOI: 10.1021/acssuschemeng.2c02408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/16/2022] [Indexed: 05/26/2023]
Abstract
Acetate is emerging as a promising feedstock for biorefineries as it can serve as an alternate carbon source for microbial cell factories. In this study, we expressed acetyl-CoA synthase in Yarrowia lipolytica PSA02004PP, and the recombinant strain grew on acetate as the sole carbon source and accumulated succinic acid or succinate (SA). Unlike traditional feedstocks, acetate is a toxic substrate for microorganisms; therefore, the recombinant strain was further subjected to adaptive laboratory evolution to alleviate toxicity and improve tolerance against acetate. At high acetate concentrations, the adapted strain Y. lipolytica ACS 5.0 grew rapidly and accumulated lipids and SA. Bioreactor cultivation of ACS 5.0 with 22.5 g/L acetate in a batch mode resulted in a maximum cell OD600 of 9.2, with lipid and SA accumulation being 0.84 and 5.1 g/L, respectively. However, its fed-batch cultivation yielded a cell OD600 of 23.5, SA titer of 6.5 g/L, and lipid production of 1.5 g/L with an acetate uptake rate of 0.2 g/L h, about 2.86 times higher than the parent strain. Cofermentation of acetate and glucose significantly enhanced the SA titer and lipid accumulation to 12.2 and 1.8 g/L, respectively, with marginal increment in cell growth (OD600: 26.7). Furthermore, metabolic flux analysis has drawn insights into utilizing acetate for the production of metabolites that are downstream to acetyl-CoA. To the best of our knowledge, this is the first report on SA production from acetate by Y. lipolytica and demonstrates a path for direct valorization of sugar-rich biomass hydrolysates with elevated acetate levels to SA.
Collapse
Affiliation(s)
- Vivek Narisetty
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
| | - Ashish A. Prabhu
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
| | - Rajesh Reddy Bommareddy
- Department
of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1
8ST, United Kingdom
| | - Rylan Cox
- School
of Aerospace, Transport and Manufacturing, Cranfield University, Wharley
End MK43 0AL, United Kingdom
| | - Deepti Agrawal
- Biochemistry
and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Ashish Misra
- Department
of Biochemical Engineering& Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - M. Ali Haider
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Amit Bhatnagar
- Department
of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Pandey
- Centre
for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
- Centre
for Energy and Environmental Sustainability, Lucknow 226 029, India
- Sustainability
Cluster, School of Engineering, University
of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Vinod Kumar
- School
of Water, Energy and Environment, Cranfield
University, Cranfield MK43 0AL, United Kingdom
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
18
|
Xin F, Wang R, Chang Y, Gao M, Xie Z, Yang W, Chen M, Zhang H, Song Y. Homologous Overexpression of Diacylglycerol Acyltransferase in Oleaginous Fungus Mucor circinelloides WJ11 Enhances Lipid Accumulation under Static Solid Cultivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9073-9083. [PMID: 35844180 DOI: 10.1021/acs.jafc.2c03489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the binding of acyl-CoA to diacylglycerol to form triacylglycerol (TAG). Previous studies strongly indicate that DGAT2, rather than DGAT1, is crucial for TAG accumulation in the oleaginous fungus Mucor circinelloides. To increase the lipid content of M. circinelloides WJ11, McDGAT2 was overexpressed by homologous recombination; compared to the control strain Mc2075, transformants McDGAT2d showed a significant increase in biomass for both spores and mycelia (from 87.7 to 101.2 mg/g in spores and from 75.6 to 93.1 mg/g in mycelia). McDGAT2 overexpression under static solid fermentation gave a greater boost to lipid accumulation in mycelia than in spores. Total fatty acid content in mycelia increased by 68.0% (from 13.6 to 22.8%) and in spores by 26.3% (from 10.6 to 13.4%). However, under submerged fermentation, the lipid content of McDGAT2d was the same as the control, while biomass was slightly reduced. Transcriptomics showed that NADPH was derived mainly from the pentose phosphate pathway, acetyl-CoA was from multiple pathways, and leucine metabolism played an important role in substrate supply for fatty acid biosynthesis. Static solid fermentation may be the more suitable fermentation method for microbial oil production by filamentous fungi due to its lower fermentation costs.
Collapse
Affiliation(s)
- Feifei Xin
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Ruixue Wang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Yufei Chang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Meng Gao
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Zhike Xie
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Wu Yang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Meiling Chen
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|