1
|
Acquah C, Seth SK, Feng C, Jockusch S, Levi L, Falcón-Cruz NV, Li L, Crespo-Hernández CE. dTAT1: An Unnatural Nucleoside Exhibiting Low Photocytotoxicity for Genetic Code Expansion. J Phys Chem Lett 2025:5390-5397. [PMID: 40401918 DOI: 10.1021/acs.jpclett.5c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Synthetic biology aims to expand the genetic code by increasing cellular information storage and retrieval. A recent advance is the dTAT1-dNaM unnatural base pair, which is more photo- and thermostable than dTPT3-dNaM while maintaining high efficiency and fidelity in vitro and in vivo. However, the photophysics and cytotoxicity behavior of dTAT1 under UV light have not been investigated. We demonstrate that dTAT1 populates the triplet state upon 390 nm excitation but exhibits minimal cytotoxicity in cells. Analysis of reactive oxygen species indicates that dTAT1 produces a low singlet oxygen quantum yield of 17% while it generates superoxide, a less harmful reactive oxygen species. Its triplet lifetime is 2.7 times shorter than that of dTPT3, contributing to its lower photocytotoxicity. These findings highlight the potential of dTAT1 for safe genetic code expansion and therapeutic applications, providing valuable insights for designing next-generation unnatural nucleosides with minimal impact on cellular health.
Collapse
Affiliation(s)
- Chris Acquah
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chuang Feng
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Steffen Jockusch
- Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Liraz Levi
- Celloram Inc., Cleveland, Ohio 44106, United States
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Nitza V Falcón-Cruz
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | | |
Collapse
|
2
|
Wang H, Tie W, Zhu W, Wang S, Zhang R, Duan J, Ye B, Zhu A, Li L. Recognition and Sequencing of Mutagenic DNA Adduct at Single-Base Resolution Through Unnatural Base Pair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404622. [PMID: 39225557 PMCID: PMC11515917 DOI: 10.1002/advs.202404622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
DNA lesions are linked to cancer, aging, and various diseases. The recognition and sequencing of special DNA lesions are of great interest but highly challenging. In this paper, an unnatural-base-pair-promoting method for sequencing highly mutagenic ethenodeoxycytidine (εC) DNA lesions that occurred frequently is developed. First, a promising unnatural base pair of dεC-dNaM to recognize εC lesions is identified, and then a conversion PCR is developed to site-precise transfer dεC-dNaM to dTPT3-dNaM for convenient Sanger sequencing. The low sequence dependence of this method and its capacity for the enrichment of dεC in the abundance of as low as 1.6 × 10-6 nucleotides is also validated. Importantly, the current method can be smoothly applied for recognition, amplification, enrichment, and sequencing of the real biological samples in which εC lesions are generated in vitro or in vivo, thus offering the first sequencing methodology of εC lesions at single-base resolution. Owing to its simple operations and no destruction of inherent structures of DNA, the unnatural-base-pair strategy may provide a new platform to produce general tools for the sequencing of DNA lesions that are hardly sequenced by traditional strategies.
Collapse
Affiliation(s)
- Honglei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Wenchao Tie
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Wuyuan Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Shuyuan Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Ruzhen Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Jianlin Duan
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Bingyu Ye
- State Key Laboratory of Antiviral Drug and Pingyuan LabHenan Normal UniversityXinxiangHenan453007China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
- State Key Laboratory of Antiviral Drug and Pingyuan LabHenan Normal UniversityXinxiangHenan453007China
- Henan Key Laboratory of Organic Functional Molecule and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationHenan Normal UniversityXinxiangHenan453007China
| |
Collapse
|
3
|
Debnath T, Cisneros GA. Investigation of the stability of D5SIC-DNAM-incorporated DNA duplex in Taq polymerase binary system: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7287-7295. [PMID: 38353000 PMCID: PMC11078294 DOI: 10.1039/d3cp05571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
DNA polymerases are fundamental enzymes that play a crucial role in processing DNA with high fidelity and accuracy ensuring the faithful transmission of genetic information. The recognition of unnatural base pairs (UBPs) by polymerases, enabling their replication, represents a significant and groundbreaking discovery with profound implications for genetic expansion. Romesberg et al. examined the impact of DNA containing 2,6-dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN) UBPs bound to T. aquaticus DNA polymerase (Taq) through crystal structure analysis. Here, we have used polarizable and nonpolarizable classical molecular dynamics (MD) simulations to investigate the structural aspects and stability of Taq in complex with a DNA duplex including a DS-DN pair in the terminal 3' and 5' positions. Our results suggest that the flexibility of UBP-incorporated DNA in the terminal position is arrested by the polymerase, thus preventing fraying and mispairing. Our investigation also reveals that the UBP remains in an intercalated conformation inside the active site, exhibiting two distinct orientations in agreement with experimental findings. Our analysis pinpoints particular residues responsible for favorable interactions with the UBP, with some relying on van der Waals interactions while other on Coulombic forces.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
4
|
Debnath T, Cisneros GA. Investigation of dynamical flexibility of D5SIC-DNAM inside DNA duplex in aqueous solution: a systematic classical MD approach. Phys Chem Chem Phys 2024; 26:7435-7445. [PMID: 38353005 PMCID: PMC11080001 DOI: 10.1039/d3cp05572h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Incorporation of artificial 3rd base pairs (unnatural base pairs, UBPs) has emerged as a fundamental technique in pursuit of expanding the genetic alphabet. 2,6-Dimethyl-2H-isoquiniline-1-thione: D5SIC (DS) and 2-methoxy-3-methylnaphthalene: DNAM (DN), a potential unnatural base pair (UBP) developed by Romesberg and colleagues, has been shown to have remarkable capability for replication within DNA. Crystal structures of a Taq polymerase/double-stranded DNA (ds-DNA) complex containing a DS-DN pair in the 3' terminus showed a parallelly stacked geometry for the pre-insertion, and an intercalated geometry for the post-insertion structure. Unconventional orientations of DS-DN inside a DNA duplex have inspired scientists to investigate the conformational orientations and structural properties of UBP-incorporated DNA. In recent years, computational simulations have been used to investigate the geometry of DS-DN within the DNA duplex; nevertheless, unresolved questions persist owing to inconclusive findings. In this work, we investigate the structural and dynamical properties of DS and DN inside a ds-DNA strand in aqueous solution considering both short and long DNA templates using polarizable, and non-polarizable classical MD simulations. Flexible conformational change of UBP with major populations of Watson-Crick-Franklin (WCF) and three distinct non-Watson-Crick-Franklin (nWCFP1, nWCFP2, nWCFO) conformations through intra and inter-strand flipping have been observed. Our results suggest that a dynamical conformational change leads to the production of diffierent conformational distribution for the systems. Simulations with a short ds-DNA duplex suggest nWCF (P1 and O) as the predominant structures, whereas long ds-DNA duplex simulations indicate almost equal populations of WCF, nWCFP1, nWCFO. DS-DN in the terminal position is found to be more flexible with occasional mispairing and fraying. Overall, these results suggest flexibility and dynamical conformational change of the UBP as well as indicate varied conformational distribution irrespective of starting orientation of the UBP and length og DNA strand.
Collapse
Affiliation(s)
- Tanay Debnath
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA.
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, Dallas, USA
| |
Collapse
|
5
|
Wang H, Zhu W, Wang C, Li X, Wang L, Huo B, Mei H, Zhu A, Zhang G, Li L. Locating, tracing and sequencing multiple expanded genetic letters in complex DNA context via a bridge-base approach. Nucleic Acids Res 2023; 51:e52. [PMID: 36971131 PMCID: PMC10201413 DOI: 10.1093/nar/gkad218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/11/2024] Open
Abstract
A panel of unnatural base pairs is developed to expand genetic alphabets. One or more unnatural base pairs (UBPs) can be inserted to enlarge the capacity, diversity, and functionality of canonical DNA, so monitoring the multiple-UBPs-containing DNA by simple and convenient approaches is essential. Herein, we report a bridge-base approach to repurpose the capability of determining TPT3-NaM UBPs. The success of this approach depends on the design of isoTAT that can simultaneously pair with NaM and G as a bridge base, as well as the discovering of the transformation of NaM to A in absence of its complementary base. TPT3-NaM can be transferred to C-G or A-T by simple PCR assays with high read-through ratios and low sequence-dependent properties, permitting for the first time to dually locate the multiple sites of TPT3-NaM pairs. Then we show the unprecedented capacity of this approach to trace accurate changes and retention ratios of multiple TPT3-NaM UPBs during in vivo replications. In addition, the method can also be applied to identify multiple-site DNA lesions, transferring TPT3-NaM makers to different natural bases. Taken together, our work presents the first general and convenient approach capable of locating, tracing, and sequencing site- and number-unlimited TPT3-NaM pairs.
Collapse
Affiliation(s)
- Honglei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| | - Wuyuan Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chao Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaohuan Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Luying Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bianbian Huo
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| | - Hui Mei
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- State Key Laboratory of Cell Differentiation Regulation and Target Drug, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Romesberg FE. Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220030. [PMID: 36633274 PMCID: PMC9835597 DOI: 10.1098/rstb.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023] Open
Abstract
Much recent interest has focused on developing proteins for human use, such as in medicine. However, natural proteins are made up of only a limited number of canonical amino acids with limited functionalities, and this makes the discovery of variants with some functions difficult. The ability to recombinantly express proteins containing non-canonical amino acids (ncAAs) with properties selected to impart the protein with desired properties is expected to dramatically improve the discovery of proteins with different functions. Perhaps the most straightforward approach to such an expansion of the genetic code is through expansion of the genetic alphabet, so that new codon/anticodon pairs can be created to assign to ncAAs. In this review, I briefly summarize more than 20 years of effort leading ultimately to the discovery of synthetic nucleotides that pair to form an unnatural base pair, which when incorporated into DNA, is stably maintained, transcribed and used to translate proteins in Escherichia coli. In addition to discussing wide ranging conceptual implications, I also describe ongoing efforts at the pharmaceutical company Sanofi to employ the resulting 'semi-synthetic organisms' or SSOs, for the production of next-generation protein therapeutics. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Floyd E. Romesberg
- Platform Innovation, Synthorx, a Sanofi Company, 11099 N. Torrey Pines Road, Suite 190, La Jolla, CA 92037, USA
| |
Collapse
|