1
|
Xu Y, Ma J, Dai C, Mao Z, Zhou Y. CRISPR/Cas12a-drived electrochemiluminescence and fluorescence dual-mode magnetic biosensor for sensitive detection of Pseudomonas aeruginosa based on iridium(III) complex as luminophore. Biosens Bioelectron 2024; 264:116678. [PMID: 39154508 DOI: 10.1016/j.bios.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat to human health, causing sepsis, inflammation, and pneumonia, so it is crucial to devise an expeditious detection platform for the P. aeruginosa. In this work, bis (2- (3, 5- dimethylphenyl) quinoline- C2, N') (acetylacetonato) iridium (III) Ir (dmpq)2 (acac) with excellent electrochemiluminescence (ECL) and fluorescence (FL) and magnetic nanoparticles were encapsulated in silica spheres. The luminescent units exhibited equal ECL and FL properties compared with single iridium complexes, and enabled rapid separation, which was of vital significance for the establishment of biosensors with effective detection. In addition, the luminescent units were further reacted with the DNA with quenching units to obtain the signal units, and the ECL/FL dual-mode biosensor was employed with the CRISPR/Cas12a system to further improve its specific recognition ability. The ECL detection linear range of as-proposed biosensor in this work was 100 fM-10 nM with the detection limit of 73 fM (S/N = 3), and FL detection linear range was 1 pM-10 nM with the detection limit of 0.126 pM (S/N = 3). Importantly, the proposed dual-mode biosensor exhibited excellent repeatability and stability in the detection of P. aeruginosa in real samples, underscoring its potential as an alternative strategy for infection prevention and safeguarding public health and safety in the future.
Collapse
Affiliation(s)
- Yaoyao Xu
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Jingjing Ma
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chenji Dai
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Science, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| |
Collapse
|
2
|
Hu K, Yin W, Bai Y, Zhang J, Yin J, Zhu Q, Mu Y. CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection. BIOSENSORS 2024; 14:367. [PMID: 39194596 DOI: 10.3390/bios14080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The detection of biomarkers (such as DNA, RNA, and protein) plays a vital role in medical diagnosis. The CRISPR-based biosensors utilize the CRISPR/Cas system for biometric recognition of targets and use biosensor strategy to read out biological signals without the employment of professional operations. Consequently, the CRISPR-based biosensors demonstrate great potential for the detection of biomarkers with high sensitivity and specificity. However, the signal readout still relies on specialized detectors, limiting its application in on-site detection for medical diagnosis. In this review, we summarize the principles and advances of the CRISPR-based biosensors with a focus on medical diagnosis. Then, we review the advantages and progress of CRISPR-based naked eye biosensors, which can realize diagnosis without additional detectors for signal readout. Finally, we discuss the challenges and further prospects for the development of CRISPR-based biosensors.
Collapse
Affiliation(s)
- Kai Hu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Weihong Yin
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Yunhan Bai
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Jiarui Zhang
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Academy of Edge Intelligence, Hangzhou City University, Hangzhou 310015, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Xu S, Wang X, Wu C, Zhu X, Deng X, Wu Y, Liu M, Huang X, Wu L, Huang H. MscI restriction enzyme cooperating recombinase-aided isothermal amplification for the ultrasensitive and rapid detection of low-abundance EGFR mutations on microfluidic chip. Biosens Bioelectron 2024; 247:115925. [PMID: 38134625 DOI: 10.1016/j.bios.2023.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The detection of low-abundance mutation genes of the epidermal growth factor receptor (EGFR) exon 21 (EGFR L858R) plays a crucial role in the diagnosis of non-small cell lung cancer (NSCLC), as it enables early cancer detection and facilitates the development of treatment strategies. A detection platform was developed by combining the MscI restriction enzyme with the recombinase-aided isothermal amplification (RAA) technique (MRE-RAA). During the RAA process, "TGG^CCA" site of the wild-type genes was cleaved by the MscI restriction enzyme, while only the low-abundance mutation genes underwent amplification. Notably, when the RAA product was combined with CRISPR-Cas system, the sensitivity of detecting the EGFR L858R mutation increased by up to 1000-fold for addition of the MscI restriction enzyme. This achievement marked the first instance of attaining an analytical sensitivity of 0.001%. Furthermore, a disk-shaped microfluidic chip was developed to automate pretreatment while concurrently analyzing four blood samples. The microfluidic features of the chip include DNA extraction, MRE-RAA, and CRISPR-based detection. The fluorescence signal is employed for detection in the microfluidic chip, which is visible to the naked eye upon exposure to blue light irradiation. Furthermore, this platform has the capability to facilitate early diagnosis for various types of cancer by enabling high-sensitivity detection of low-abundance mutation genes.
Collapse
Affiliation(s)
- Shiqi Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xueting Zhu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xinyi Deng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | | | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Yan X, Yang P, Qiu D, Chen D, Pan J, Zhang X, Ju H, Zhou J. Ligation-Based High-Performance Mimetic Enzyme Sensing Platform for Nucleic Acid Detection. Anal Chem 2024; 96:388-393. [PMID: 38153911 DOI: 10.1021/acs.analchem.3c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
G-quadruplex (G4)/hemin DNAzyme is a promising candidate to substitute horseradish peroxidase in biosensing systems, especially for the detection of nucleic acids. However, the relatively suboptimal catalytic capacity limits its potential applications. This makes it imperative to develop an ideal signal for the construction of highly sensitive biosensing platforms. Herein, we integrated a novel chimeric peptide-DNAzyme (CPDzyme) with the ligase chain reaction (LCR) for the cost-efficient and highly sensitive detection of nucleic acids. By employing microRNA (miRNA) and single-nucleotide polymorphism detection as the model, we designed a G4-forming sequence on the LCR probe with a terminally labeled amino group. Subsequently, asymmetric hemin with carboxylic arms allowed assembly with the LCR products and peptide to form CPDzyme, followed by the magnetic separation of the extraneous components and chemiluminescence detection. Compared with the conventional G4/hemin signaling-based method, the LCR-CPDzyme system demonstrated 3 orders of magnitude improved sensitivity, with accurate quantification of as low as 25 aM miRNA and differentiation of 0.1% of mutant DNA from the pool containing a large amount of wild-type DNA. The proposed LCR-CPDzyme strategy is a potentially powerful method for in vitro diagnostics and serves as a reference for the development of other ligation- or hybridization-based nucleic acid amplification assays.
Collapse
Affiliation(s)
- Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Peiru Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
5
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
6
|
Zhu Y, Liu J, Liu S, Zhu X, Wu J, Zhou Q, He J, Wang H, Gao W. CRISPR/Cas12a-assisted visible fluorescence for pseudo dual nucleic acid detection based on an integrated chip. Anal Chim Acta 2023; 1280:341860. [PMID: 37858552 DOI: 10.1016/j.aca.2023.341860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND A false negative result is one of the major problems in nucleic acid detection. Failure to screen positive samples for pathogens or viruses poses a risk to public health. This situation will lead to more serious consequences for infectious pathogens or viruses. At present, the common solution is to introduce exogenous or endogenous internal control. Because it amplifies and is detected separately from the target gene, it cannot avoid false negative results caused by DNA extraction failure or reagent inactivation. There is an urgent need for a simple and reliable method to solve the false negative problem of nucleic acid detection. RESULTS We established a chip and an on-chip detection method for the integrated detection of target genes and internal control using the CRISPR system in LAMP amplification products. The chip is processed from a low-cost PMMA board and has three chambers and some channels. After adding the sample, the chip only needs to be rotated twice, and the sample enters three chambers successively depending on its gravity for dual LAMP reaction and CRISPR detections. With a portable LED blue light exciter, visual fluorescence detection is realized. Whether the detection result is positive, negative, or invalid can be determined according to the fluorescence in the CRISPR chamber for target gene and CRISPR chamber for internal control. In this study, the detection of Salmonella enterica in Fenneropenaeus chinensis was taken as an example. The results showed good specificity and sensitivity. It could detect as low as 15 copies/μL of Salmonella enterica. SIGNIFICANCE The on-chip detection solves the problem of aerosol contamination and false negative results. It has the advantages of high sensitivity, high specificity, high accuracy, and low cost. This research will advance the development of nucleic acid detection technology, providing a new and reliable strategy for POCT detection of pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianlin Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Shanna Liu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xinjian Zhu
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Qingli Zhou
- Department of Information Technology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| | - Jinsong He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huanying Wang
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Wenwen Gao
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
7
|
Deng L, Zhou S, Dong J, Liu Y, Huang Z, Sun H, Jin L, Huo D, Hou C. CRISPR/Cas12a and primer-assisted rolling circle amplification integrated ultra-sensitive dual-signal sensing platform for EGFR 19 detection. Anal Chim Acta 2023; 1279:341755. [PMID: 37827629 DOI: 10.1016/j.aca.2023.341755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
Herein, we integrated CRISPR/Cas12a with primer-assisted rolling circle amplification (PARCA) to specifically detect EGFR 19 from the genome. We fused the method into fluorescent and electrochemical detection systems forming a stable and sensitive dual-signal sensing platform. The fluorescent detection system stably detected EGFR 19 in a linear range from 500 fM to 10 nM with an ultra-low background signal. The electrochemical detection system possessed a detection limit as low as 42 aM due to the introduction of nanomaterial UIO-66-NH2. The dual-signal sensing platform showed superior performance in complex serum samples and real cell genomes and provided a flexible and dynamic approach for the ultra-sensitive detection of EGFR 19.
Collapse
Affiliation(s)
- Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China
| | - Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China
| | - Yin Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, 610000, PR China
| | - Human Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China
| | - Liang Jin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering, College of Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
8
|
Yu L, Peng Y, Sheng M, Wang Q, Huang J, Yang X. Sensitive and Amplification-Free Electrochemiluminescence Biosensor for HPV-16 Detection Based on CRISPR/Cas12a and DNA Tetrahedron Nanostructures. ACS Sens 2023; 8:2852-2858. [PMID: 37402133 DOI: 10.1021/acssensors.3c00806] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Rapid and accurate detection of biomarkers was very important for early screening and treatment of diseases. Herein, a sensitive and amplification-free electrochemiluminescence (ECL) biosensor based on CRISPR/Cas12a and DNA tetrahedron nanostructures (TDNs) was constructed. Briefly, 3D TDN was self-assembled on the Au nanoparticle-deposited glassy carbon electrode surface to construct the biosensing interface. The presence of the target would activate the trans-cleavage activity of Cas12a-crRNA duplex to cleave the single-stranded DNA signal probe on the vertex of TDN, causing the Ru(bpy)32+ to fall from the electrode surface and weakened the ECL signal. Thus, the CRISPR/Cas12a system transduced the change of target concentration into an ECL signal enabling the detection of HPV-16. The specific recognition of CRISPR/Cas12a to HPV-16 made the biosensor have good selectivity, while the TDN-modified sensing interface could reduce the cleaving steric resistance and improve the cleaving performance of CRISPR/Cas12a. In addition, the pretreated biosensor could complete sample detection within 100 min with a detection limit of 8.86 fM, indicating that the developed biosensor possesses the potential application prospect for fast and sensitive nucleic acid detection.
Collapse
Affiliation(s)
- Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Mengting Sheng
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qian Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
9
|
Liu Q, Hu K, She Y, Hu Y. In-situ growth G4-nanowire-driven electrochemical biosensor for probing H2O2 in living cell and the activity of terminal deoxynucleotidyl transferase. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Zhou S, Dong J, Deng L, Wang G, Yang M, Wang Y, Huo D, Hou C. Endonuclease-Assisted PAM-free Recombinase Polymerase Amplification Coupling with CRISPR/Cas12a (E-PfRPA/Cas) for Sensitive Detection of DNA Methylation. ACS Sens 2022; 7:3032-3040. [PMID: 36214815 DOI: 10.1021/acssensors.2c01330] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA methylation is considered as a potential cancer biomarker. The evaluation of DNA methylation level will contribute to the prognosis and diagnosis of cancer. Herein, we propose a novel assay based on endonuclease-assisted protospacer adjacent motif (PAM)-free recombinase polymerase amplification coupling with CRISPR/Cas12a (E-PfRPA/Cas) for sensitive detection of DNA methylation. The methylation-sensitive restriction enzyme (MSRE) is first used to selectively digest unmethylated DNA, while the methylated target remains structurally intact. Therefore, the methylated target can initiate the RPA reaction to generate a large amount of double-stranded DNA (dsDNA). To avoid the dependence of PAM site of CRISPR/Cas12a, one of the RPA primers is designed with 5'-phosphate terminuses. After treating with Lambda, the sequence with 5'-phosphate modification will be degraded, leaving the single-stranded DNA (ssDNA). The CRISPR/Cas12a can accurately locate ssDNA without PAM, then initiating its trans-cleavage activity for further signal amplification. Meanwhile, non-specific amplification can be also avoided under Lambda, effectively filtering the detection background. Benefiting from the specificity of MSRE, the high amplification efficiency of Lambda-assisted RPA, and the self-amplification effect of CRISPR/Cas, the E-PfRPA/Cas assay shows outstanding sensitivity and selectivity, and as low as 0.05% of methylated DNA can be distinguished. Moreover, the lateral flow assay is also introduced to exploit the point-of-care diagnostic platform. Most importantly, the proposed method shows high sensitivity for determination of genomic DNA methylation from cancer cells, indicating its great potential for tumor-specific gene analysis.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Liyuan Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
11
|
Zhou M, Wang H, Li C, Yan C, Qin P, Huang L. CRISPR/Cas9 mediated triple signal amplification platform for high selective and sensitive detection of single base mutations. Anal Chim Acta 2022; 1230:340421. [DOI: 10.1016/j.aca.2022.340421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022]
|