1
|
Tang M, Pan Z, Jin M, Zhang H, Pan X, Rao Z. Systems metabolic engineering of Escherichia coli for the high-level production of deoxyviolacein, a natural colorant. BIORESOURCE TECHNOLOGY 2025; 431:132584. [PMID: 40286824 DOI: 10.1016/j.biortech.2025.132584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Deoxyviolacein is a natural colorant with various biological properties, widely applied in cosmetic and pharmaceutical fields. However, current methods of deoxyviolacein production by natural producers may cause highly lethal infections in humans, limiting the sustainable production of deoxyviolacein. Here, an l-tryptophan-producing Escherichia coli strain was engineered for efficient deoxyviolacein production. First, the deoxyviolacein synthesis pathway was introduced and optimized to construct a base strain. Second, multi-modular engineering was conducted for further optimization, including engineering of the glucose uptake system and central metabolism and enhancement of precursor supply. To coordinate metabolic flux distribution, the optimal expression of aroGQ151F, ppsA and tktA was tuned by generating libraries of tunable intergenic regions coupled with a novel l-tryptophan biosensor. Finally, the best-performing strain successfully accumulated 12.18 g/L of deoxyviolacein from glucose, showing a competitive deoxyviolacein titer reported to date and providing a paradigm for the production of value-added aromatic compounds in E. coli.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhenhui Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Minghui Jin
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
2
|
Hoffpauir ZA, Lamb AL. Identification of the phosphatase essential for riboflavin biosynthesis in Aquifex aeolicus. J Biol Chem 2025; 301:108443. [PMID: 40147773 PMCID: PMC12051542 DOI: 10.1016/j.jbc.2025.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
The riboflavin biosynthetic pathway uses dedicated enzymes that function exclusively for riboflavin production. Indeed, the pathway is fully annotated, with the exception of an unknown phosphatase that catalyzes the dephosphorylation of 5-amino-6-ribitylamino-pyrimidinedione 5'-phosphate (ARAPDP) to generate 5-amino-6-ribitylamino-pyrimidinedione (ARAPD), which is the substrate for the penultimate enzyme of the pathway, lumazine synthase. Whereas nonspecific phosphatases from the haloacid dehalogenase superfamily capable of catalyzing the dephosphorylation of ARAPDP have been reported for Bacillus subtilis, Escherichia coli, and Arabadopsis thaliana, we hypothesized that a specific phosphatase may carry out this reaction. Using an anaerobic activity-based screen, two phosphatases from Aquifex aeolicus were identified that dephosphorylate ARAPDP, but only one reconstitutes riboflavin production in a one-pot experiment with the other four enzymes of riboflavin biosynthesis. The first enzyme, annotated as an IMP, is nonspecific, and indiscriminately dephosphorylates ARAPDP along with ribulose 5-phosphate and NADPH, two required substrates of riboflavin biosynthesis. The second enzyme, a histidine family phosphatase, only dephosphorylates ARAPDP in the one-pot experiment thus facilitating riboflavin formation. The structures of both enzymes were determined by X-ray crystallography to reveal the vastly different folds capable of performing the ARAPDP dephosphorylation chemistry. This work has impact both for the production of riboflavin by microbial fermentation and for antimicrobial drug design.
Collapse
Affiliation(s)
- Zoe A Hoffpauir
- Department of Chemistry, 1 UTSA Circle, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Audrey L Lamb
- Department of Chemistry, 1 UTSA Circle, University of Texas at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
3
|
Li S, Zhou X, Chen Y, Li G, Deng Y. Precision Quantification and Rational Regulation of Protein Expression with Bicistronic Cassette for Efficient Biotin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6854-6866. [PMID: 40042090 DOI: 10.1021/acs.jafc.4c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Identifying optimal enzyme expression levels is critical for microbial cell factories, as metabolic imbalances can impede the synthesis of target products. However, current screening strategies often rely on trial-and-error approaches, which are labor-intensive and have limited applicability. Here we developed a quantitative strategy utilizing a bicistronic design (BCD) library for enzyme expression screening, requiring no more than 17 tests in two steps: expression profiling and focused selection. The BCD library encoded a 992-fold expression range, and protein abundances were quantified based on fluorescence intensities due to a strong correlation (r = 0.96). This strategy was employed to fine-tune the expression of the rate-limiting enzyme BioB in biotin synthesis, whose overexpression inhibits cell growth and biotin production. Consequently, BCD6 was identified the optimal expression strength for the overexpressed bio operon, while BCD7 was optimal for the overexpressed bio + isc operons, resulting in 1.47-fold and 3.03-fold increases in biotin titer compared to original strain. Western Blot analysis confirmed a 2.38-fold and 2.71-fold increase in BioB abundance, respectively. The pioneering application of BCD establishes it as a versatile tool for the rational tuning of enzyme expression in the construction of any microbial cell factory.
Collapse
Affiliation(s)
- Shun Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ye Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guohui Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Wang J, Wang W, Chen Y, Liu Z, Ji X, Pan G, Li Z, Fan K. Development of a xylose-inducible and glucose-insensitive expression system for Parageobacillus thermoglucosidasius. Appl Microbiol Biotechnol 2024; 108:493. [PMID: 39441395 PMCID: PMC11499391 DOI: 10.1007/s00253-024-13333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Inducible expression systems are pivotal for governing gene expression in strain engineering and synthetic biotechnological applications. Therefore, a critical need persists for the development of versatile and efficient inducible expression mechanisms. In this study, the xylose-responsive promoter xylA5p and its transcriptional regulator XylR were identified in Parageobacillus thermoglucosidasius DSM 2542. By combining promoter xylA5p with its regulator XylR, fine-tuning the expression strength of XylR, and reducing the glucose catabolite repression on xylose uptake, we successfully devised a xylose-inducible and glucose-insensitive expression system, denoted as IExyl*. This system exhibited diverse promoter strengths upon induction with xylose at varying concentrations and remained unhindered in the presence of glucose. Moreover, we showed the applicability of IExyl* in P. thermoglucosidasius by redirecting metabolic flux towards riboflavin biosynthesis, culminating in a 2.8-fold increase in riboflavin production compared to that of the starting strain. This glucose-insensitive and xylose-responsive expression system provides valuable tools for designing optimized biosynthetic pathways for high-value products and facilitates future synthetic biology investigations in Parageobacillus. KEY POINTS: • A xylose-inducible and glucose-insensitive expression system IExyl* was developed. • IExyl* was applied to enhance the riboflavin production in P. thermoglucosidasius • A tool for metabolic engineering and synthetic biology research in Parageobacillus strains.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Fu B, Chen M, Bao X, Lu J, Zhu Z, Guan F, Yan C, Wang P, Fu L, Yu P. Site-directed mutagenesis of bifunctional riboflavin kinase/FMN adenylyltransferase via CRISPR/Cas9 to enhance riboflavin production. Synth Syst Biotechnol 2024; 9:503-512. [PMID: 38680946 PMCID: PMC11047187 DOI: 10.1016/j.synbio.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Vitamin B2 is an essential water-soluble vitamin. For most prokaryotes, a bifunctional enzyme called FAD synthase catalyzes the successive conversion of riboflavin to FMN and FAD. In this study, the plasmid pNEW-AZ containing six key genes for the riboflavin synthesis was transformed into strain R2 with the deleted FMN riboswitch, yielding strain R5. The R5 strain could produce 540.23 ± 5.40 mg/L riboflavin, which was 10.61 % higher than the R4 strain containing plasmids pET-AE and pAC-Z harboring six key genes. To further enhance the production of riboflavin, homology matching and molecular docking were performed to identify key amino acid residues of FAD synthase. Nine point mutation sites were identified. By comparing riboflavin kinase activity, mutations of T203D and N210D, which respectively decreased by 29.90 % and 89.32 % compared to wild-type FAD synthase, were selected for CRISPR/Cas9 gene editing of the genome, generating engineered strains R203 and R210. pNEW-AZ was transformed into R203, generating R6. R6 produced 657.38 ± 47.48 mg/L riboflavin, a 21.69 % increase compared to R5. This study contributes to the high production of riboflavin in recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
- College of Forestry Science and Technology, Lishui Vocational and Technical College, 357 Zhongshan Street North, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Meng Chen
- Lishui Institute for Quality Inspection and Testing, 395 Zhongshan Street, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Xianfeng Bao
- College of Forestry Science and Technology, Lishui Vocational and Technical College, 357 Zhongshan Street North, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Fuyao Guan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Chuyang Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Peize Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Linglin Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| |
Collapse
|
6
|
You J, Wang Y, Wang K, Du Y, Zhang X, Zhang X, Yang T, Pan X, Rao Z. Utilizing 5' UTR Engineering Enables Fine-Tuning of Multiple Genes within Operons to Balance Metabolic Flux in Bacillus subtilis. BIOLOGY 2024; 13:277. [PMID: 38666889 PMCID: PMC11047901 DOI: 10.3390/biology13040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
The application of synthetic biology tools to modulate gene expression to increase yield has been thoroughly demonstrated as an effective and convenient approach in industrial production. In this study, we employed a high-throughput screening strategy to identify a 5' UTR sequence from the genome of B. subtilis 168. This sequence resulted in a 5.8-fold increase in the expression level of EGFP. By utilizing the 5' UTR sequence to overexpress individual genes within the rib operon, it was determined that the genes ribD and ribAB serve as rate-limiting enzymes in the riboflavin synthesis pathway. Constructing a 5' UTR library to regulate EGFP expression resulted in a variation range in gene expression levels exceeding 100-fold. Employing the same 5' UTR library to regulate the expression of EGFP and mCherry within the operon led to a change in the expression ratio of these two genes by over 10,000-fold. So, employing a 5' UTR library to modulate the expression of the rib operon gene and construct a synthetic rib operon resulted in a 2.09-fold increase in riboflavin production. These results indicate that the 5' UTR sequence identified and characterized in this study can serve as a versatile synthetic biology toolkit for achieving complex metabolic network reconstruction. This toolkit can facilitate the fine-tuning of gene expression to produce target products.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yifan Wang
- Department of Food Science and Technology, Texas A & M University, College Station, TX 77843, USA;
| | - Kang Wang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xiaoling Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (J.Y.); (K.W.); (Y.D.); (X.Z.); (X.Z.); (T.Y.)
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
7
|
Yuan P, Xu M, Mao C, Zheng H, Sun D. Dynamically Regulating Glucose Uptake to Reduce Overflow Metabolism with a Quorum-Sensing Circuit for the Efficient Synthesis of d-Pantothenic Acid in Bacillus subtilis. ACS Synth Biol 2023; 12:2983-2995. [PMID: 37664894 DOI: 10.1021/acssynbio.3c00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In response to a high concentration of glucose, Bacillus subtilis, a microbial chassis for producing many industrial metabolites, rapidly takes up glucose using the phosphotransferase system (PTS), leading to overflow metabolism, a common phenomenon observed in many bacteria. Although overflow metabolism affects cell growth and reduces the production of many metabolites, effective strategies that reduce overflow metabolism while maintaining normal cell growth remain to be developed. Here, we used a quorum sensing (QS)-mediated circuit to tune the glucose uptake rate and thereby relieve overflow metabolism in an engineered B. subtilis for producing d-pantothenic acid (DPA). A low-efficiency non-PTS system was used for glucose uptake at the early growth stages to avoid a rapid glycolytic flux, while an efficient PTS system, which was activated by a QS circuit, was automatically activated at the late growth stages after surpassing a threshold cell density. This strategy was successfully applied as a modular metabolic engineering process for the high production of DPA. By enhancing the translation levels of key enzymes (3-methyl-2-oxobutanoate hydroxymethytransferase, pantothenate synthetase, aspartate 1-decarboxylase proenzyme, 2-dehydropantoate 2-reductase, dihydroxy-acid dehydratase, and acetolactate synthase) with engineered 5'-untranslated regions (UTRs) of mRNAs, the metabolic flux was promoted in the direction of DPA production, elevating the yield of DPA to 5.11 g/L in shake flasks. Finally, the engineered B. subtilis produced 21.52 g/L of DPA in fed-batch fermentations. Our work not only revealed a new strategy for reducing overflow metabolism by adjusting the glucose uptake rate in combination with promoting the translation of key metabolic enzymes through engineering the 5'-UTR of mRNAs but also showed its power in promoting the bioproduction of DPA in B. subtilis, exhibiting promising application prospects.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Chengyao Mao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Han Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
8
|
Su H, Lin J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:109. [PMID: 37400889 DOI: 10.1186/s13068-023-02340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural and Resources, Xian, 710075, Shanxi, China
| | - JiaFu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
9
|
Liu Y, Zhang Q, Qi X, Gao H, Wang M, Guan H, Yu B. Metabolic Engineering of Bacillus subtilis for Riboflavin Production: A Review. Microorganisms 2023; 11:microorganisms11010164. [PMID: 36677456 PMCID: PMC9863419 DOI: 10.3390/microorganisms11010164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Riboflavin (vitamin B2) is one of the essential vitamins that the human body needs to maintain normal metabolism. Its biosynthesis has become one of the successful models for gradual replacement of traditional chemical production routes. B. subtilis is characterized by its short fermentation time and high yield, which shows a huge competitive advantage in microbial fermentation for production of riboflavin. This review summarized the advancements of regulation on riboflavin production as well as the synthesis of two precursors of ribulose-5-phosphate riboflavin (Ru5P) and guanosine 5'-triphosphate (GTP) in B. subtilis. The different strategies to improve production of riboflavin by metabolic engineering were also reviewed.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quan Zhang
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
- Correspondence: (Q.Z.); (B.Y.)
| | - Xiaoxiao Qi
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Gao
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Meng Wang
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Hao Guan
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC (Dalian) Research Institute of Petroleum and Petro-Chemicals Co., Ltd., Dalian 116045, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.Z.); (B.Y.)
| |
Collapse
|
10
|
Pan X, You J, Tang M, Zhang X, Xu M, Yang T, Rao Z. Improving prodigiosin production by transcription factor engineering and promoter engineering in Serratia marcescens. Front Microbiol 2022; 13:977337. [PMID: 35992721 PMCID: PMC9382025 DOI: 10.3389/fmicb.2022.977337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Prodigiosin (PG), a red linear tripyrrole pigment produced by Serratia marcescens, has attracted attention due to its immunosuppressive, antimicrobial, and anticancer properties. Although many studies have been used to dissect the biosynthetic pathways and regulatory network of prodigiosin production in S. marcescens, few studies have been focused on improving prodigiosin production through metabolic engineering in this strain. In this study, transcription factor engineering and promoter engineering was used to promote the production of prodigiosin in S. marcescens JNB5-1. Firstly, through construing of a Tn5G transposon insertion library of strain JNB5-1, it was found that the DNA-binding response regulator BVG89_19895 (OmpR) can promote prodigiosin synthesis in this strain. Then, using RNA-Seq analysis, reporter green fluorescent protein analysis and RT-qPCR analysis, the promoter P17 (PRplJ) was found to be a strong constitutive promoter in strain JNB5-1. Finally, the promoter P17 was used for overexpressing of prodigiosin synthesis activator OmpR and PsrA in strain JNB5-1 and a recombinant strain PG-6 was obtained. Shake flask analysis showed that the prodigiosin titer of this strain was increased to 10.25 g/L, which was 1.62-times that of the original strain JNB5-1 (6.33 g/L). Taken together, this is the first well-characterized constitutive promoter library from S. marcescens, and the transcription factor engineering and promoter engineering can be also useful strategies to improve the production of other high value-added products in S. marcescens.
Collapse
|