1
|
Goetz H, Zhang R, Wang X, Tian XJ. Resource competition-driven bistability and stochastic switching amplify gene expression noise. PLoS Comput Biol 2025; 21:e1012931. [PMID: 40267175 PMCID: PMC12052209 DOI: 10.1371/journal.pcbi.1012931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 05/05/2025] [Accepted: 03/04/2025] [Indexed: 04/25/2025] Open
Abstract
Although the impact of resource competition on the deterministic behavior of synthetic gene circuits has been studied, its effects on gene expression noise remain obscure. In this work, we systematically analyze the role of resource competition in noise propagation within a genetic inhibition cascade circuit. We found that resource competition amplifies gene expression noise by introducing unexpected bistability and stochastic switching between the two stable states. This emergent bistability, driven by resource competition-mediated double negative feedback, allows one gene to dominate expression while suppressing the other in a "winner-takes-all" behavior. Our findings highlight the critical role of resource competition in shaping the noise dynamics and its propagation, underscoring the importance of considering these effects when designing and controlling synthetic circuits.
Collapse
Affiliation(s)
- Hanah Goetz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
2
|
Chakravarty S, Guttal R, Zhang R, Tian XJ. Mitigating Winner-Take-All Resource Competition through Antithetic Control Mechanism. ACS Synth Biol 2024; 13:4050-4060. [PMID: 39641579 PMCID: PMC11948800 DOI: 10.1021/acssynbio.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Competition among genes for limited transcriptional and translational resources impairs the functionality and modularity of synthetic gene circuits. Traditional control mechanisms, such as feedforward and negative feedback loops, have been proposed to alleviate these challenges, but they often focus on individual modules or inadvertently increase the burden on the system. In this study, we introduce three novel multimodule control strategies─local regulation, global regulation, and negatively competitive regulation (NCR)─that employ an antithetic regulatory mechanism to mitigate resource competition. Our systematic analysis reveals that while all three control mechanisms can alleviate resource competition to some extent, the NCR controller consistently outperforms both the global and local controllers. This superior performance stems from the unique architecture of the NCR controller, which is independent of specific parameter choices. Notably, the NCR controller not only facilitates the activation of less active modules through cross-activation mechanisms but also effectively utilizes the resource consumption within the controller itself. These findings emphasize the critical role of carefully designing the topology of multimodule controllers to ensure robust performance.
Collapse
Affiliation(s)
- Suchana Chakravarty
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Rishabh Guttal
- School of Life Sciences, Arizona State University, Tempe, Arizona State University, Tempe, Arizona 85281, United States
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
3
|
Chakravarty S, Zhang R, Tian XJ. Noise Reduction in Resource-Coupled Multi-Module Gene Circuits through Antithetic Feedback Control. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2024; 2024:5566-5571. [PMID: 40224377 PMCID: PMC11987709 DOI: 10.1109/cdc56724.2024.10886586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Gene circuits within the same host cell often experience coupling, stemming from the competition for limited resources during transcriptional and translational processes. This resource competition introduces an additional layer of noise to gene expression. Here we present three multi-module antithetic control strategies: negatively competitive regulation (NCR) controller, alongside local and global controllers, aimed at reducing the gene expression noise within the context of resource competition. Through stochastic simulations and fluctuation-dissipation theorem (FDT) analysis, our findings highlight the superior performance of the NCR antithetic controller in reducing noise levels. Our research provides an effective control strategy for attenuating resource-driven noise and offers insight into the development of robust gene circuits.
Collapse
Affiliation(s)
- Suchana Chakravarty
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Hartman S, Ryan SD, Karamched BR. Walk this way: modeling foraging ant dynamics in multiple food source environments. J Math Biol 2024; 89:41. [PMID: 39266783 PMCID: PMC11392994 DOI: 10.1007/s00285-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024]
Abstract
Foraging for resources is an essential process for the daily life of an ant colony. What makes this process so fascinating is the self-organization of ants into trails using chemical pheromone in the absence of direct communication. Here we present a stochastic lattice model that captures essential features of foraging ant dynamics inspired by recent agent-based models while forgoing more detailed interactions that may not be essential to trail formation. Nevertheless, our model's results coincide with those presented in more sophisticated theoretical models and experiments. Furthermore, it captures the phenomenon of multiple trail formation in environments with multiple food sources. This latter phenomenon is not described well by other more detailed models. We complement the stochastic lattice model by describing a macroscopic PDE which captures the basic structure of lattice model. The PDE provides a continuum framework for the first-principle interactions described in the stochastic lattice model and is amenable to analysis. Linear stability analysis of this PDE facilitates a computational study of the impact various parameters impart on trail formation. We also highlight universal features of the modeling framework that may allow this simple formation to be used to study complex systems beyond ants.
Collapse
Affiliation(s)
- Sean Hartman
- College of Music, Florida State University, Tallahassee, FL, 32306, USA
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Shawn D Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, 44115, USA.
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, 44115, OH, USA.
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
5
|
Stone A, Youssef A, Rijal S, Zhang R, Tian XJ. Context-dependent redesign of robust synthetic gene circuits. Trends Biotechnol 2024; 42:895-909. [PMID: 38320912 PMCID: PMC11223972 DOI: 10.1016/j.tibtech.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cells provide dynamic platforms for executing exogenous genetic programs in synthetic biology, resulting in highly context-dependent circuit performance. Recent years have seen an increasing interest in understanding the intricacies of circuit-host relationships, their influence on the synthetic bioengineering workflow, and in devising strategies to alleviate undesired effects. We provide an overview of how emerging circuit-host interactions, such as growth feedback and resource competition, impact both deterministic and stochastic circuit behaviors. We also emphasize control strategies for mitigating these unwanted effects. This review summarizes the latest advances and the current state of host-aware and resource-aware design of synthetic gene circuits.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Abdelrahaman Youssef
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
6
|
Chakravarty S, Zhang R, Tian XJ. Noise Reduction in Resource-Coupled Multi-Module Gene Circuits through Antithetic Feedback Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595570. [PMID: 38826454 PMCID: PMC11142251 DOI: 10.1101/2024.05.24.595570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gene circuits within the same host cell often experience coupling, stemming from the competition for limited resources during transcriptional and translational processes. This resource competition introduces an additional layer of noise to gene expression. Here we present three multi-module antithetic control strategies: negatively competitive regulation (NCR) controller, alongside local and global controllers, aimed at reducing the gene expression noise within the context of resource competition. Through stochastic simulations and fluctuation-dissipation theorem (FDT) analysis, our findings highlight the superior performance of the NCR antithetic controller in reducing noise levels. Our research provides an effective control strategy for attenuating resource-driven noise and offers insight into the development of robust gene circuits.
Collapse
Affiliation(s)
- Suchana Chakravarty
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Stone A, Rijal S, Zhang R, Tian XJ. Enhancing circuit stability under growth feedback with supplementary repressive regulation. Nucleic Acids Res 2024; 52:1512-1521. [PMID: 38164993 PMCID: PMC10853785 DOI: 10.1093/nar/gkad1233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
The field of synthetic biology and biosystems engineering increasingly acknowledges the need for a holistic design approach that incorporates circuit-host interactions into the design process. Engineered circuits are not isolated entities but inherently entwined with the dynamic host environment. One such circuit-host interaction, 'growth feedback', results when modifications in host growth patterns influence the operation of gene circuits. The growth-mediated effects can range from growth-dependent elevation in protein/mRNA dilution rate to changes in resource reallocation within the cell, which can lead to complete functional collapse in complex circuits. To achieve robust circuit performance, synthetic biologists employ a variety of control mechanisms to stabilize and insulate circuit behavior against growth changes. Here we propose a simple strategy by incorporating one repressive edge in a growth-sensitive bistable circuit. Through both simulation and in vitro experimentation, we demonstrate how this additional repressive node stabilizes protein levels and increases the robustness of a bistable circuit in response to growth feedback. We propose the incorporation of repressive links in gene circuits as a control strategy for desensitizing gene circuits against growth fluctuations.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
Melendez-Alvarez JR, Zhang R, Tian XJ. Growth Feedback Confers Cooperativity in Resource-Competing Synthetic Gene Circuits. CHAOS, SOLITONS, AND FRACTALS 2023; 173:113713. [PMID: 37485435 PMCID: PMC10361397 DOI: 10.1016/j.chaos.2023.113713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Modularity is a key concept in designing synthetic gene circuits, as it allows for constructing complex molecular systems using well-characterized building blocks. One of the major challenges in this field is that these modular components often do not function as expected when assembled into larger circuits. One of the major issues is caused by resource competition, where multiple genes in the circuit compete for the same limited cellular resources, such as transcription factors and ribosomes. In addition, the mutual inhibition between synthetic gene circuits and cell growth results in growth feedback that significantly impacts its host-circuit dynamics. However, the complexity of the gene circuit dynamics under intertwined resource competition and growth feedback is not fully understood. This study developed a theoretical framework to examine the dynamics of synthetic gene circuits by considering both growth feedback and resource competition. Our results suggest a cooperative behavior between resource-competing gene circuits under growth feedback. Cooperation or competition is non-monotonically determined by the metabolic burden threshold. These two diverse effects could lead to the activation or deactivation of one circuit by the other. Lastly, the cooperativity mediated by growth feedback can attenuate the winner-takes-all resource competition. These findings show that coupling growth feedback and resource competition plays a crucial role in the dynamics of the host-circuit system, and understanding its effects helps control unexpected gene expression behaviors.
Collapse
Affiliation(s)
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|