1
|
Schuder DN, Lu ND, Chaput JC. Revealr-Based Diagnostic Panel for Rapid Detection of Acute Respiratory Infections. ACS Synth Biol 2024; 13:4202-4208. [PMID: 39630957 DOI: 10.1021/acssynbio.4c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
RNA-encoded viral nucleic acid analyte reporter (REVEALR) is a rapid and highly sensitive point-of-care diagnostic developed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection, genotyping, and quantification. Here, we extend the breadth of this nucleic acid technology to include a viral respiratory panel that can detect low attomolar levels of influenza A (IAV), influenza B (IBV), SARS-CoV-2 (CoV2), and the respiratory syncytial virus (RSV). Of 39 clinical samples collected at the UCI Medical Center in Orange, California, the extended REVEALR panel showed a positive predictive agreement and negative predictive agreement of 100% for IAV, CoV2, and RSV in sequence-verified clinical samples, with 0 false positive results. Additionally, REVEALR was able to detect a synthetic IBV genome and precisely identify the viruses from clinical samples that were combined to simulate a patient infected with more than one virus. Together, these results demonstrate that the REVEALR respiratory panel provides a valuable diagnostic for identifying the pathogens responsible for causing lower respiratory infections that pose serious healthcare challenges in the United States.
Collapse
Affiliation(s)
- Daniel N Schuder
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Nhi D Lu
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-3958, United States
- Department of Chemistry, University of California, Irvine, California 92697-3958, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
2
|
Khan P, Aufdembrink LM, Adamala KP, Engelhart AE. PACRAT: pathogen detection with aptamer-observed cascaded recombinase polymerase amplification-in vitro transcription. RNA (NEW YORK, N.Y.) 2024; 30:891-900. [PMID: 38637016 PMCID: PMC11182012 DOI: 10.1261/rna.079891.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
The SARS-CoV-2 pandemic underscored the need for early, rapid, and widespread pathogen detection tests that are readily accessible. Many existing rapid isothermal detection methods use the recombinase polymerase amplification (RPA), which exhibits polymerase chain reaction (PCR)-like sensitivity, specificity, and even higher speed. However, coupling RPA to other enzymatic reactions has proven difficult. For the first time, we demonstrate that with tuning of buffer conditions and optimization of reagent concentrations, RPA can be cascaded into an in vitro transcription reaction, enabling detection using fluorescent aptamers in a one-pot reaction. We show that this reaction, which we term PACRAT (pathogen detection with aptamer-observed cascaded recombinase polymerase amplification-in vitro transcription) can be used to detect SARS-CoV-2 RNA with single-copy detection limits, Escherichia coli with single-cell detection limits, and 10-min detection times. Further demonstrating the utility of our one-pot, cascaded amplification system, we show PACRAT can be used for multiplexed detection of the pathogens SARS-CoV-2 and E. coli, along with multiplexed detection of two variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Pavana Khan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lauren M Aufdembrink
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
3
|
Gao L, Yi K, Tan Y, Guo C, Zheng D, Shen C, Li F. Engineering Gene-Specific DNAzymes for Accessible and Multiplexed Nucleic Acid Testing. JACS AU 2024; 4:1664-1672. [PMID: 38665662 PMCID: PMC11040662 DOI: 10.1021/jacsau.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
The accurate and timely detection of disease biomarkers at the point-of-care is essential to ensuring effective treatment and epidemiological surveillance. Here, we report the selection and engineering of RNA-cleaving DNAzymes that respond to specific genetic markers and amplify detection signals. Because the target-specific activation of gene-specific DNAzymes (gDz) is like the trans-cleavage activity of clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated (Cas) machinery, we further developed a CRISPR-like assay using RNA-cleaving DNAzyme coupled with isothermal sequence and signal amplification (CLARISSA) for nucleic acid detection in clinical samples. Building on the high sequence specificity and orthogonality of gDzs, CLARISSA is highly versatile and expandable for multiplex testing. Upon integration with an isothermal recombinase polymerase amplification, CLARISSA enabled the detection of human papillomavirus (HPV) 16 in 189 cervical samples collected from cervical cancer screening participants (n = 189) with 100% sensitivity and 97.4% specificity, respectively. A multiplexed CLARISSA further allowed the simultaneous analyses of HPV16 and HPV18 in 46 cervical samples, which returned clinical sensitivity of 96.3% for HPV16 and 83.3% for HPV18, respectively. No false positives were found throughout our tests. Besides the fluorescence readout using fluorogenic reporter probes, CLARISSA is also demonstrated to be fully compatible with a visual lateral flow readout. Because of the high sensitivity, accessibility, and multiplexity, we believe CLARISSA is an ideal CRISPR-Dx alternative for clinical diagnosis in field-based and point-of-care applications.
Collapse
Affiliation(s)
- Lu Gao
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ke Yi
- Department
of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic
and Pediatric Diseases and Birth Defects of Ministry of Education,
West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Tan
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chen Guo
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Danxi Zheng
- Department
of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic
and Pediatric Diseases and Birth Defects of Ministry of Education,
West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenlan Shen
- Department
of Laboratory Medicine, Med+X Center for Manufacturing, West China
Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Li
- Key
Laboratory of Green Chemistry & Technology of Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Department
of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
- Department
of Laboratory Medicine, Med+X Center for Manufacturing, West China
Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|