1
|
Banta AB, Cuellar RA, Nadig N, Davis BC, Peters JM. The promise of CRISPR-associated transposons for bacterial functional genomics. Curr Opin Microbiol 2025; 83:102563. [PMID: 39631148 PMCID: PMC11830528 DOI: 10.1016/j.mib.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated transposons (CASTs) are naturally occurring amalgamations of CRISPR-Cas machinery and Tn7-like transposons that direct site-specific integration of transposon DNA via programmable guide RNAs. Although the mechanisms of CAST-based transposition have been well studied at the molecular and structural level, CASTs have yet to be broadly applied to bacterial genome engineering and systematic gene phenotyping (i.e. functional genomics) - likely due to their relatively recent discovery. Here, we describe the function and applications of CASTs, focusing on well-characterized systems, including the type I-F CAST from Vibrio cholerae (VcCAST) and type V-K CAST from Scytonema hofmanni (ShCAST). Further, we discuss the potentially transformative impact of targeted transposition on bacterial functional genomics by proposing genome-scale extensions of existing CAST tools.
Collapse
Affiliation(s)
- Amy B Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rodrigo A Cuellar
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Nischala Nadig
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bryce C Davis
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Chen C, Li YW, Zheng YY, Li XJ, Wu N, Guo Q, Shi TQ, Huang H. Expanding the frontiers of genome engineering: A comprehensive review of CRISPR-associated transposons. Biotechnol Adv 2025; 78:108481. [PMID: 39579910 DOI: 10.1016/j.biotechadv.2024.108481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Genome engineering is extensively utilized in diverse scientific disciplines, advancing human welfare and addressing various challenges. Numerous genome engineering tools have been developed to modify genomic sequences. Among these, the CRISPR-Cas system has transformed the field and remains the most commonly employed genome-editing tool. However, the CRISPR-Cas system relies on induced double-strand breaks, with editing efficiency often limited by factors such as cell type and homologous recombination, impeding further progress. CRISPR-associated transposons (CASTs) represent programmable mobile genetic elements. CASTs identified as active were developed as CAST systems, which can perform RNA-guided DNA integration and are featured by high precision, programmability, and kilobase-level payload capacity. Moreover, CAST system allows for precise genome modifications independent of host DNA repair mechanisms, addressing the constraints of conventional CRISPR-Cas systems. It expands the genome engineering toolkit and is poised to become a representative of next-generation genome editing tools. This review thoroughly examines the research progress on CASTs, highlighting the current challenges faced in genome engineering based on CASTs, and offering insights into the ongoing development of this transformative technology.
Collapse
Affiliation(s)
- Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Yuan-Yuan Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Xiu-Juan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224057, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
3
|
Banta AB, Myers KS, Ward RD, Cuellar RA, Place M, Freeh CC, Bacon EE, Peters JM. A Targeted Genome-scale Overexpression Platform for Proteobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582922. [PMID: 38496613 PMCID: PMC10942329 DOI: 10.1101/2024.03.01.582922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Targeted, genome-scale gene perturbation screens using Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) and activation (CRISPRa) have revolutionized eukaryotic genetics, advancing medical, industrial, and basic research. Although CRISPRi knockdowns have been broadly applied in bacteria, options for genome-scale overexpression face key limitations. Here, we develop a facile approach for genome-scale gene overexpression in bacteria we call, "CRISPRtOE" (CRISPR transposition and OverExpression). We create a platform for comprehensive gene targeting using CRISPR-associated transposition (CAST) and show that transposition occurs at a higher frequency in non-transcribed DNA. We then demonstrate that CRISPRtOE can upregulate gene expression in Proteobacteria with medical and industrial relevance by integrating synthetic promoters of varying strength upstream of target genes. Finally, we employ CRISPRtOE screening at the genome-scale in Escherichia coli, recovering known antibiotic targets and genes with unexplored roles in antibiotic function. We envision that CRISPRtOE will be a valuable overexpression tool for antibiotic mode of action, industrial strain optimization, and gene function discovery in bacteria.
Collapse
Affiliation(s)
- Amy B. Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin S. Myers
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rodrigo A. Cuellar
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Place
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Claire C. Freeh
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily E. Bacon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|