1
|
Li Y, Abraham C, Suslov O, Yaren O, Shaw RW, Kim MJ, Wan S, Marliere P, Benner SA. Synthetic Biology Pathway to Nucleoside Triphosphates for Expanded Genetic Alphabets. ACS Synth Biol 2023; 12:1772-1781. [PMID: 37227319 PMCID: PMC10911313 DOI: 10.1021/acssynbio.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
One horizon in synthetic biology seeks alternative forms of DNA that store, transcribe, and support the evolution of biological information. Here, hydrogen bond donor and acceptor groups are rearranged within a Watson-Crick geometry to get 12 nucleotides that form 6 independently replicating pairs. Such artificially expanded genetic information systems (AEGIS) support Darwinian evolution in vitro. To move AEGIS into living cells, metabolic pathways are next required to make AEGIS triphosphates economically from their nucleosides, eliminating the need to feed these expensive compounds in growth media. We report that "polyphosphate kinases" can be recruited for such pathways, working with natural diphosphate kinases and engineered nucleoside kinases. This pathway in vitro makes AEGIS triphosphates, including third-generation triphosphates having improved ability to survive in living bacterial cells. In α-32P-labeled forms, produced here for the first time, they were used to study DNA polymerases, finding cases where third-generation AEGIS triphosphates perform better with natural enzymes than second-generation AEGIS triphosphates.
Collapse
Affiliation(s)
- Yubing Li
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Clay Abraham
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Oleg Suslov
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Ozlem Yaren
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Ryan W. Shaw
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Myong-Jung Kim
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Shuo Wan
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
| | - Philippe Marliere
- Institute of Systems & Synthetic Biology, Génopole, 5 rue Desbruères, 91030 Evry Cedex France
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd., Alachua, Florida 32615 United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd., Alachua, Florida 32615 United States
| |
Collapse
|
2
|
Gerecht K, Freund N, Liu W, Liu Y, Fürst MJLJ, Holliger P. The Expanded Central Dogma: Genome Resynthesis, Orthogonal Biosystems, Synthetic Genetics. Annu Rev Biophys 2023; 52:413-432. [PMID: 37159296 DOI: 10.1146/annurev-biophys-111622-091203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis). In this sense, biological sciences now follow the lead given by the chemical sciences. Synthesis can complement analytic studies but also allows novel approaches to answering fundamental biological questions and opens up vast opportunities for the exploitation of biological processes to provide solutions for global problems. In this review, we explore aspects of this synthesis paradigm as applied to the chemistry and function of nucleic acids in biological systems and beyond, specifically, in genome resynthesis, synthetic genetics (i.e., the expansion of the genetic alphabet, of the genetic code, and of the chemical make-up of genetic systems), and the elaboration of orthogonal biosystems and components.
Collapse
Affiliation(s)
- Karola Gerecht
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Niklas Freund
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Wei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Yang Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| | - Maximilian J L J Fürst
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
- Current address: Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom;
| |
Collapse
|
3
|
Sun L, Ma X, Zhang B, Qin Y, Ma J, Du Y, Chen T. From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chem Biol 2022; 3:1173-1197. [PMID: 36320892 PMCID: PMC9533422 DOI: 10.1039/d2cb00116k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Nucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts. The introduction of unnatural nucleic acids into living organisms has also started expanding the central dogma in vivo. In this article, we first summarize the development of unnatural nucleic acids with modifications or alterations in different moieties. The strategies for engineering DNAPs and RNAPs are then extensively reviewed, followed by summarization of predominant polymerase mutants with good activities for synthesizing, reverse transcribing, or even amplifying unnatural nucleic acids. Some recent application examples of unnatural nucleic acids with their polymerases are then introduced. At the end, the approaches of introducing UBPs and synthetic genetic polymers into living organisms for the creation of semi-synthetic organisms are reviewed and discussed.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Xingyun Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Binliang Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yanjia Qin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology 510006 Guangzhou China
| |
Collapse
|
4
|
Hans S, Kumar N, Gohil N, Khambhati K, Bhattacharjee G, Deb SS, Maurya R, Kumar V, Reshamwala SMS, Singh V. Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microb Cell Fact 2022; 21:100. [PMID: 35643549 PMCID: PMC9148472 DOI: 10.1186/s12934-022-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022] Open
Abstract
The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals.
Collapse
|
5
|
Hellendahl KF, Fehlau M, Hans S, Neubauer P, Kurreck A. Semi-Automated High-Throughput Substrate Screening Assay for Nucleoside Kinases. Int J Mol Sci 2021; 22:11558. [PMID: 34768989 PMCID: PMC8584170 DOI: 10.3390/ijms222111558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and nucleotide analogue production in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of great importance. Here, we report on the validation of a well-known luciferase-based assay for the detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid handling robot. Good linearity was demonstrated (r² > 0.98) in the range of 0-500 µM ATP, and it was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural, 12 modified) substrates. The screening results correlated well with literature data, and additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.
Collapse
Affiliation(s)
- Katja F. Hellendahl
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Maryke Fehlau
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| | - Sebastian Hans
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| |
Collapse
|
6
|
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020; 49:7602-7626. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in the creation of artificial extra base pairs (unnatural base pairs, UBPs) are opening the door to a new research area, xenobiology, and genetic alphabet expansion technologies. UBPs that function as third base pairs in replication, transcription, and/or translation enable the site-specific incorporation of novel components into DNA, RNA, and proteins. Here, we describe the UBPs developed by three research teams and their application in PCR-based diagnostics, high-affinity DNA aptamer generation, site-specific labeling of RNAs, semi-synthetic organism creation, and unnatural-amino-acid-containing protein synthesis.
Collapse
Affiliation(s)
- Michiko Kimoto
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.
| | | |
Collapse
|
7
|
Szabó JE, Surányi ÉV, Mébold BS, Trombitás T, Cserepes M, Tóth J. A user-friendly, high-throughput tool for the precise fluorescent quantification of deoxyribonucleoside triphosphates from biological samples. Nucleic Acids Res 2020; 48:e45. [PMID: 32103262 PMCID: PMC7192609 DOI: 10.1093/nar/gkaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cells maintain a fine-tuned, dynamic concentration balance in the pool of deoxyribonucleoside 5′-triphosphates (dNTPs). This balance is essential for physiological processes including cell cycle control or antiviral defense. Its perturbation results in increased mutation frequencies, replication arrest and may promote cancer development. An easily accessible and relatively high-throughput method would greatly accelerate the exploration of the diversified consequences of dNTP imbalances. The dNTP incorporation based, fluorescent TaqMan-like assay published by Wilson et al. has the aforementioned advantages over mass spectrometry, radioactive or chromatography based dNTP quantification methods. Nevertheless, the assay failed to produce reliable data in several biological samples. Therefore, we applied enzyme kinetics analysis on the fluorescent dNTP incorporation curves and found that the Taq polymerase exhibits a dNTP independent exonuclease activity that decouples signal generation from dNTP incorporation. Furthermore, we found that both polymerization and exonuclease activities are unpredictably inhibited by the sample matrix. To resolve these issues, we established a kinetics based data analysis method which identifies the signal generated by dNTP incorporation. We automated the analysis process in the nucleoTIDY software which enables even the inexperienced user to calculate the final and accurate dNTP amounts in a 96-well-plate setup within minutes.
Collapse
Affiliation(s)
- Judit Eszter Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Éva Viola Surányi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Bence Sándor Mébold
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamás Trombitás
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Mihály Cserepes
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
8
|
Wang X, Hoshika S, Peterson RJ, Kim MJ, Benner SA, Kahn JD. Biophysics of Artificially Expanded Genetic Information Systems. Thermodynamics of DNA Duplexes Containing Matches and Mismatches Involving 2-Amino-3-nitropyridin-6-one (Z) and Imidazo[1,2-a]-1,3,5-triazin-4(8H)one (P). ACS Synth Biol 2017; 6:782-792. [PMID: 28094993 DOI: 10.1021/acssynbio.6b00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthetic nucleobases presenting non-Watson-Crick arrangements of hydrogen bond donor and acceptor groups can form additional nucleotide pairs that stabilize duplex DNA independent of the standard A:T and G:C pairs. The pair between 2-amino-3-nitropyridin-6-one 2'-deoxyriboside (presenting a {donor-donor-acceptor} hydrogen bonding pattern on the Watson-Crick face of the small component, trivially designated Z) and imidazo[1,2-a]-1,3,5-triazin-4(8H)one 2'-deoxyriboside (presenting an {acceptor-acceptor-donor} hydrogen bonding pattern on the large component, trivially designated P) is one of these extra pairs for which a substantial amount of molecular biology has been developed. Here, we report the results of UV absorbance melting measurements and determine the energetics of binding of DNA strands containing Z and P to give short duplexes containing Z:P pairs as well as various mismatches comprising Z and P. All measurements were done at 1 M NaCl in buffer (10 mM Na cacodylate, 0.5 mM EDTA, pH 7.0). Thermodynamic parameters (ΔH°, ΔS°, and ΔG°37) for oligonucleotide hybridization were extracted. Consistent with the Watson-Crick model that considers both geometric and hydrogen bonding complementarity, the Z:P pair was found to contribute more to duplex stability than any mismatches involving either nonstandard nucleotide. Further, the Z:P pair is more stable than a C:G pair. The Z:G pair was found to be the most stable mismatch, forming either a deprotonated mismatched pair or a wobble base pair analogous to the stable T:G mismatch. The C:P pair is less stable, perhaps analogous to the wobble pair observed for C:O6-methyl-G, in which the pyrimidine is displaced into the minor groove. The Z:A and T:P mismatches are much less stable. Parameters for predicting the thermodynamics of oligonucleotides containing Z and P bases are provided. This represents the first case where this has been done for a synthetic genetic system.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, No. 7, Alachua, Florida 32615, United States
| | - Raymond J. Peterson
- Celadon Laboratories, 6525 Belcrest
Road, Hyattsville, Maryland 20782, United States
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, No. 7, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, No. 7, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, No. 17, Alachua, Florida 32615, United States
| | - Jason D. Kahn
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
9
|
Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant. PLoS One 2017; 12:e0174163. [PMID: 28323896 PMCID: PMC5360312 DOI: 10.1371/journal.pone.0174163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1’-b-d-2’-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1’-b-d-2’-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo.
Collapse
|
10
|
Matsuura MF, Winiger CB, Shaw RW, Kim MJ, Kim MS, Daugherty AB, Chen F, Moussatche P, Moses JD, Lutz S, Benner SA. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System. ACS Synth Biol 2017; 6:388-394. [PMID: 27935283 DOI: 10.1021/acssynbio.6b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of an artificially expanded genetic information system (AEGIS). By shuffling hydrogen bonding groups on the nucleobases, AEGIS adds potentially as many as four additional nucleobase pairs to the genetic "alphabet". Specifically, we show that DmdNK Q81E creates the monophosphates from the AEGIS nucleosides dP, dZ, dX, and dK (respectively 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, dP; 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one, dZ; 8-(1'β-d-2'-deoxy-ribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione, dX; and 2,4-diamino-5-(1'-β-d-2'-deoxyribofuranosyl)-pyrimidine, dK). Using a coupled enzyme assay, in vitro kinetic parameters were obtained for three of these nucleosides (dP, dX, and dK; the UV absorbance of dZ made it impossible to get its precise kinetic parameters). Thus, DmdNK Q81E appears to be a suitable enzyme to catalyze the first step in the biosynthesis of AEGIS 2'-deoxynucleoside triphosphates in vitro and, perhaps, in vivo, in a cell able to manage plasmids containing AEGIS DNA.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christian B. Winiger
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ashley B. Daugherty
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Fei Chen
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Patricia Moussatche
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Stefan Lutz
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven A. Benner
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
11
|
Winiger CB, Shaw RW, Kim MJ, Moses JD, Matsuura MF, Benner SA. Expanded Genetic Alphabets: Managing Nucleotides That Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides. ACS Synth Biol 2017; 6:194-200. [PMID: 27648724 DOI: 10.1021/acssynbio.6b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
2,4-Diaminopyrimidine (trivially K) and imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (trivially X) form a nucleobase pair with Watson-Crick geometry as part of an artificially expanded genetic information system (AEGIS). Neither K nor X can form a Watson-Crick pair with any natural nucleobase. Further, neither K nor X has an accessible tautomeric form or a protonated/deprotonated state that can form a Watson-Crick pair with any natural nucleobase. In vitro experiments show how DNA polymerase I from E. coli manages replication of DNA templates with one K:X pair, but fails with templates containing two adjacent K:X pairs. In analogous in vivo experiments, E. coli lacking dKTP/dXTP cannot rescue chloramphenicol resistance from a plasmid containing two adjacent K:X pairs. These studies identify bacteria able to serve as selection environments for engineering cells that replicate AEGIS pairs that lack forms that are Watson-Crick complementary to any natural nucleobase.
Collapse
Affiliation(s)
- Christian B. Winiger
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Mariko F. Matsuura
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| |
Collapse
|
12
|
Matsuura MF, Kim HJ, Takahashi D, Abboud KA, Benner SA. Crystal structures of deprotonated nucleobases from an expanded DNA alphabet. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2016; 72:952-959. [PMID: 27918296 DOI: 10.1107/s2053229616017071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022]
Abstract
Reported here is the crystal structure of a heterocycle that implements a donor-donor-acceptor hydrogen-bonding pattern, as found in the Z component [6-amino-5-nitropyridin-2(1H)-one] of an artificially expanded genetic information system (AEGIS). AEGIS is a new form of DNA from synthetic biology that has six replicable nucleotides, rather than the four found in natural DNA. Remarkably, Z crystallizes from water as a 1:1 complex of its neutral and deprotonated forms, and forms a `skinny' pyrimidine-pyrimidine pair in this structure. The pair resembles the known intercalated cytosine pair. The formation of the same pair in two different salts, namely poly[[aqua(μ6-2-amino-6-oxo-3-nitro-1,6-dihydropyridin-1-ido)sodium]-6-amino-5-nitropyridin-2(1H)-one-water (1/1/1)], denoted Z-Sod, {[Na(C5H4N3O3)(H2O)]·C5H5N3O3·H2O}n, and ammonium 2-amino-6-oxo-3-nitro-1,6-dihydropyridin-1-ide-6-amino-5-nitropyridin-2(1H)-one-water (1/1/1), denoted Z-Am, NH4+·C5H4N3O3-·C5H5N3O3·H2O, under two different crystallization conditions suggests that the pair is especially stable. Implications of this structure for the use of this heterocycle in artificial DNA are discussed.
Collapse
Affiliation(s)
- Mariko F Matsuura
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Hyo Joong Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| | - Daisuke Takahashi
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 17, Alachua, FL 32615, USA
| |
Collapse
|
13
|
Benner SA, Karalkar NB, Hoshika S, Laos R, Shaw RW, Matsuura M, Fajardo D, Moussatche P. Alternative Watson-Crick Synthetic Genetic Systems. Cold Spring Harb Perspect Biol 2016; 8:a023770. [PMID: 27663774 PMCID: PMC5088529 DOI: 10.1101/cshperspect.a023770] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In its "grand challenge" format in chemistry, "synthesis" as an activity sets out a goal that is substantially beyond current theoretical and technological capabilities. In pursuit of this goal, scientists are forced across uncharted territory, where they must answer unscripted questions and solve unscripted problems, creating new theories and new technologies in ways that would not be created by hypothesis-directed research. Thus, synthesis drives discovery and paradigm changes in ways that analysis cannot. Described here are the products that have arisen so far through the pursuit of one grand challenge in synthetic biology: Recreate the genetics, catalysis, evolution, and adaptation that we value in life, but using genetic and catalytic biopolymers different from those that have been delivered to us by natural history on Earth. The outcomes in technology include new diagnostic tools that have helped personalize the care of hundreds of thousands of patients worldwide. In science, the effort has generated a fundamentally different view of DNA, RNA, and how they work.
Collapse
Affiliation(s)
- Steven A Benner
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| | - Nilesh B Karalkar
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| | - Shuichi Hoshika
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| | - Roberto Laos
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| | - Ryan W Shaw
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| | - Mariko Matsuura
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| | - Diego Fajardo
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| | - Patricia Moussatche
- The Westheimer Institute for Science and Technology, The Foundation for Applied Molecular Evolution, Alachua, Florida 32615
| |
Collapse
|
14
|
Winiger CB, Kim MJ, Hoshika S, Shaw RW, Moses JD, Matsuura MF, Gerloff DL, Benner SA. Polymerase Interactions with Wobble Mismatches in Synthetic Genetic Systems and Their Evolutionary Implications. Biochemistry 2016; 55:3847-50. [DOI: 10.1021/acs.biochem.6b00533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian B. Winiger
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Shuichi Hoshika
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Mariko F. Matsuura
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Dietlind L. Gerloff
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|