1
|
Qian W, Wang X, Huang Y, Kang Y, Pan P, Hsieh CY, Hou T. Deep Learning-Driven Insights into Enzyme-Substrate Interaction Discovery. J Chem Inf Model 2025; 65:187-200. [PMID: 39721977 DOI: 10.1021/acs.jcim.4c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Enzymes are ubiquitous catalysts with enormous application potential in biomedicine, green chemistry, and biotechnology. However, accurately predicting whether a molecule serves as a substrate for a specific enzyme, especially for novel entities, remains a significant challenge. Compared with traditional experimental methods, computational approaches are much more resource-efficient and time-saving, but they often compromise on accuracy. To address this, we introduce the molecule-enzyme interaction (MEI) model, a novel machine learning framework designed to predict the probability that a given molecule is a substrate for a specified enzyme with high accuracy. Utilizing a comprehensive data set that encapsulates extensive information on enzymatic reactions and enzyme sequences, the MEI model seamlessly combines atomic environmental data with amino acid sequence features through an advanced attention mechanism within a hierarchical neural network. Empirical evaluations have confirmed that the MEI model outperforms the current state-of-the-art model by at least 6.7% in prediction accuracy and 8.5% in AUROC, underscoring its enhanced predictive capabilities. Additionally, the MEI model demonstrates remarkable generalization across data sets of varying qualities and sizes. This adaptability is further evidenced by its successful application in diverse areas, such as predicting interactions within the CYP450 enzyme family and achieving an outstanding accuracy of 90.5% in predicting the enzymatic breakdown of complex plastics within environmental applications. These examples illustrate the model's ability to effectively transfer knowledge from coarsely annotated enzyme databases to smaller, high-precision data sets, robustly modeling both sparse and high-quality databases. We believe that this versatility firmly establishes the MEI model as a foundational tool in enzyme research with immense potential to extend beyond its original scope.
Collapse
Affiliation(s)
- Wenjia Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaorui Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuansheng Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
2
|
Ji T, Liaqat F, Khazi MI, Liaqat N, Nawaz MZ, Zhu D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. INDUSTRIAL CROPS AND PRODUCTS 2024; 216:118759. [DOI: 10.1016/j.indcrop.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
3
|
Ferreira S, Balola A, Sveshnikova A, Hatzimanikatis V, Vilaça P, Maia P, Carreira R, Stoney R, Carbonell P, Souza CS, Correia J, Lousa D, Soares CM, Rocha I. Computer-aided design and implementation of efficient biosynthetic pathways to produce high added-value products derived from tyrosine in Escherichia coli. Front Bioeng Biotechnol 2024; 12:1360740. [PMID: 38978715 PMCID: PMC11228882 DOI: 10.3389/fbioe.2024.1360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Developing efficient bioprocesses requires selecting the best biosynthetic pathways, which can be challenging and time-consuming due to the vast amount of data available in databases and literature. The extension of the shikimate pathway for the biosynthesis of commercially attractive molecules often involves promiscuous enzymes or lacks well-established routes. To address these challenges, we developed a computational workflow integrating enumeration/retrosynthesis algorithms, a toolbox for pathway analysis, enzyme selection tools, and a gene discovery pipeline, supported by manual curation and literature review. Our focus has been on implementing biosynthetic pathways for tyrosine-derived compounds, specifically L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine, with significant applications in health and nutrition. We selected one pathway to produce L-DOPA and two different pathways for dopamine-one already described in the literature and a novel pathway. Our goal was either to identify the most suitable gene candidates for expression in Escherichia coli for the known pathways or to discover innovative pathways. Although not all implemented pathways resulted in the accumulation of target compounds, in our shake-flask experiments we achieved a maximum L-DOPA titer of 0.71 g/L and dopamine titers of 0.29 and 0.21 g/L for known and novel pathways, respectively. In the case of L-DOPA, we utilized, for the first time, a mutant version of tyrosinase from Ralstonia solanacearum. Production of dopamine via the known biosynthesis route was accomplished by coupling the L-DOPA pathway with the expression of DOPA decarboxylase from Pseudomonas putida, resulting in a unique biosynthetic pathway never reported in literature before. In the context of the novel pathway, dopamine was produced using tyramine as the intermediate compound. To achieve this, tyrosine was initially converted into tyramine by expressing TDC from Levilactobacillus brevis, which, in turn, was converted into dopamine through the action of the enzyme encoded by ppoMP from Mucuna pruriens. This marks the first time that an alternative biosynthetic pathway for dopamine has been validated in microbes. These findings underscore the effectiveness of our computational workflow in facilitating pathway enumeration and selection, offering the potential to uncover novel biosynthetic routes, thus paving the way for other target compounds of biotechnological interest.
Collapse
Affiliation(s)
- Sofia Ferreira
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Alexandra Balola
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Anastasia Sveshnikova
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Paulo Vilaça
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Paulo Maia
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Rafael Carreira
- SilicoLife-Computational Biology Solutions for the Life Sciences, Braga, Portugal
| | - Ruth Stoney
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC: Consejo Superior de Investigaciones Científicas, Paterna, Spain
| | - Caio Silva Souza
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - João Correia
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Diana Lousa
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Cláudio M Soares
- Protein Modelling Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Isabel Rocha
- Systems and Synthetic Biology Laboratory, ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
4
|
Goshisht MK. Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges. ACS OMEGA 2024; 9:9921-9945. [PMID: 38463314 PMCID: PMC10918679 DOI: 10.1021/acsomega.3c05913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and
Applied Sciences, University of Wisconsin—Green
Bay, Green
Bay, Wisconsin 54311-7001, United States
| |
Collapse
|
5
|
Xing H, Cai P, Liu D, Han M, Liu J, Le Y, Zhang D, Hu QN. High-throughput prediction of enzyme promiscuity based on substrate-product pairs. Brief Bioinform 2024; 25:bbae089. [PMID: 38487850 PMCID: PMC10940840 DOI: 10.1093/bib/bbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 03/18/2024] Open
Abstract
The screening of enzymes for catalyzing specific substrate-product pairs is often constrained in the realms of metabolic engineering and synthetic biology. Existing tools based on substrate and reaction similarity predominantly rely on prior knowledge, demonstrating limited extrapolative capabilities and an inability to incorporate custom candidate-enzyme libraries. Addressing these limitations, we have developed the Substrate-product Pair-based Enzyme Promiscuity Prediction (SPEPP) model. This innovative approach utilizes transfer learning and transformer architecture to predict enzyme promiscuity, thereby elucidating the intricate interplay between enzymes and substrate-product pairs. SPEPP exhibited robust predictive ability, eliminating the need for prior knowledge of reactions and allowing users to define their own candidate-enzyme libraries. It can be seamlessly integrated into various applications, including metabolic engineering, de novo pathway design, and hazardous material degradation. To better assist metabolic engineers in designing and refining biochemical pathways, particularly those without programming skills, we also designed EnzyPick, an easy-to-use web server for enzyme screening based on SPEPP. EnzyPick is accessible at http://www.biosynther.com/enzypick/.
Collapse
Affiliation(s)
- Huadong Xing
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengli Cai
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juan Liu
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan 430072, China
| | - Yingying Le
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dachuan Zhang
- Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
6
|
Fu X, Suo H, Zhang J, Chen D. Machine-learning-guided Directed Evolution for AAV Capsid Engineering. Curr Pharm Des 2024; 30:811-824. [PMID: 38445704 DOI: 10.2174/0113816128286593240226060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Target gene delivery is crucial to gene therapy. Adeno-associated virus (AAV) has emerged as a primary gene therapy vector due to its broad host range, long-term expression, and low pathogenicity. However, AAV vectors have some limitations, such as immunogenicity and insufficient targeting. Designing or modifying capsids is a potential method of improving the efficacy of gene delivery, but hindered by weak biological basis of AAV, complexity of the capsids, and limitations of current screening methods. Artificial intelligence (AI), especially machine learning (ML), has great potential to accelerate and improve the optimization of capsid properties as well as decrease their development time and manufacturing costs. This review introduces the traditional methods of designing AAV capsids and the general steps of building a sequence-function ML model, highlights the applications of ML in the development workflow, and summarizes its advantages and challenges.
Collapse
Affiliation(s)
- Xianrong Fu
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hairui Suo
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiachen Zhang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dongmei Chen
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
7
|
Pepe M, Hesami M, de la Cerda KA, Perreault ML, Hsiang T, Jones AMP. A journey with psychedelic mushrooms: From historical relevance to biology, cultivation, medicinal uses, biotechnology, and beyond. Biotechnol Adv 2023; 69:108247. [PMID: 37659744 DOI: 10.1016/j.biotechadv.2023.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Psychedelic mushrooms containing psilocybin and related tryptamines have long been used for ethnomycological purposes, but emerging evidence points to the potential therapeutic value of these mushrooms to address modern neurological, psychiatric health, and related disorders. As a result, psilocybin containing mushrooms represent a re-emerging frontier for mycological, biochemical, neuroscience, and pharmacology research. This work presents crucial information related to traditional use of psychedelic mushrooms, as well as research trends and knowledge gaps related to their diversity and distribution, technologies for quantification of tryptamines and other tryptophan-derived metabolites, as well as biosynthetic mechanisms for their production within mushrooms. In addition, we explore the current state of knowledge for how psilocybin and related tryptamines are metabolized in humans and their pharmacological effects, including beneficial and hazardous human health implications. Finally, we describe opportunities and challenges for investigating the production of psychedelic mushrooms and metabolic engineering approaches to alter secondary metabolite profiles using biotechnology integrated with machine learning. Ultimately, this critical review of all aspects related to psychedelic mushrooms represents a roadmap for future research efforts that will pave the way to new applications and refined protocols.
Collapse
Affiliation(s)
- Marco Pepe
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Karla A de la Cerda
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | - Melissa L Perreault
- Departments of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Guelph, Canada
| | | |
Collapse
|
8
|
Ryu G, Kim GB, Yu T, Lee SY. Deep learning for metabolic pathway design. Metab Eng 2023; 80:130-141. [PMID: 37734652 DOI: 10.1016/j.ymben.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The establishment of a bio-based circular economy is imperative in tackling the climate crisis and advancing sustainable development. In this realm, the creation of microbial cell factories is central to generating a variety of chemicals and materials. The design of metabolic pathways is crucial in shaping these microbial cell factories, especially when it comes to producing chemicals with yet-to-be-discovered biosynthetic routes. To aid in navigating the complexities of chemical and metabolic domains, computer-supported tools for metabolic pathway design have emerged. In this paper, we evaluate how digital strategies can be employed for pathway prediction and enzyme discovery. Additionally, we touch upon the recent strides made in using deep learning techniques for metabolic pathway prediction. These computational tools and strategies streamline the design of metabolic pathways, facilitating the development of microbial cell factories. Leveraging the capabilities of deep learning in metabolic pathway design is profoundly promising, potentially hastening the advent of a bio-based circular economy.
Collapse
Affiliation(s)
- Gahyeon Ryu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Taeho Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Choi G, Kim W, Koo J. Investigating the Performance of Machine Learning Methods in Predicting Functional Properties of the Hydrogenase Variants. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
10
|
Jiang Y, Ran X, Yang ZJ. Data-driven enzyme engineering to identify function-enhancing enzymes. Protein Eng Des Sel 2023; 36:gzac009. [PMID: 36214500 PMCID: PMC10365845 DOI: 10.1093/protein/gzac009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023] Open
Abstract
Identifying function-enhancing enzyme variants is a 'holy grail' challenge in protein science because it will allow researchers to expand the biocatalytic toolbox for late-stage functionalization of drug-like molecules, environmental degradation of plastics and other pollutants, and medical treatment of food allergies. Data-driven strategies, including statistical modeling, machine learning, and deep learning, have largely advanced the understanding of the sequence-structure-function relationships for enzymes. They have also enhanced the capability of predicting and designing new enzymes and enzyme variants for catalyzing the transformation of new-to-nature reactions. Here, we reviewed the recent progresses of data-driven models that were applied in identifying efficiency-enhancing mutants for catalytic reactions. We also discussed existing challenges and obstacles faced by the community. Although the review is by no means comprehensive, we hope that the discussion can inform the readers about the state-of-the-art in data-driven enzyme engineering, inspiring more joint experimental-computational efforts to develop and apply data-driven modeling to innovate biocatalysts for synthetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Data Science Institute, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
11
|
Abstract
This chapter outlines the myriad applications of machine learning (ML) in synthetic biology, specifically in engineering cell and protein activity, and metabolic pathways. Though by no means comprehensive, the chapter highlights several prominent computational tools applied in the field and their potential use cases. The examples detailed reinforce how ML algorithms can enhance synthetic biology research by providing data-driven insights into the behavior of living systems, even without detailed knowledge of their underlying mechanisms. By doing so, ML promises to increase the efficiency of research projects by modeling hypotheses in silico that can then be tested through experiments. While challenges related to training dataset generation and computational costs remain, ongoing improvements in ML tools are paving the way for smarter and more streamlined synthetic biology workflows that can be readily employed to address grand challenges across manufacturing, medicine, engineering, agriculture, and beyond.
Collapse
Affiliation(s)
- Brendan Fu-Long Sieow
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Ryan De Sotto
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Ren Darren Seet
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Patra P, B R D, Kundu P, Das M, Ghosh A. Recent advances in machine learning applications in metabolic engineering. Biotechnol Adv 2023; 62:108069. [PMID: 36442697 DOI: 10.1016/j.biotechadv.2022.108069] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Metabolic engineering encompasses several widely-used strategies, which currently hold a high seat in the field of biotechnology when its potential is manifesting through a plethora of research and commercial products with a strong societal impact. The genomic revolution that occurred almost three decades ago has initiated the generation of large omics-datasets which has helped in gaining a better understanding of cellular behavior. The itinerary of metabolic engineering that has occurred based on these large datasets has allowed researchers to gain detailed insights and a reasonable understanding of the intricacies of biosystems. However, the existing trail-and-error approaches for metabolic engineering are laborious and time-intensive when it comes to the production of target compounds with high yields through genetic manipulations in host organisms. Machine learning (ML) coupled with the available metabolic engineering test instances and omics data brings a comprehensive and multidisciplinary approach that enables scientists to evaluate various parameters for effective strain design. This vast amount of biological data should be standardized through knowledge engineering to train different ML models for providing accurate predictions in gene circuits designing, modification of proteins, optimization of bioprocess parameters for scaling up, and screening of hyper-producing robust cell factories. This review briefs on the premise of ML, followed by mentioning various ML methods and algorithms alongside the numerous omics datasets available to train ML models for predicting metabolic outcomes with high-accuracy. The combinative interplay between the ML algorithms and biological datasets through knowledge engineering have guided the recent advancements in applications such as CRISPR/Cas systems, gene circuits, protein engineering, metabolic pathway reconstruction, and bioprocess engineering. Finally, this review addresses the probable challenges of applying ML in metabolic engineering which will guide the researchers toward novel techniques to overcome the limitations.
Collapse
Affiliation(s)
- Pradipta Patra
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Disha B R
- B.M.S College of Engineering, Basavanagudi, Bengaluru, Karnataka 560019, India
| | - Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
13
|
Yeo HC, Selvarajoo K. Machine learning alternative to systems biology should not solely depend on data. Brief Bioinform 2022; 23:6731718. [PMID: 36184188 PMCID: PMC9677488 DOI: 10.1093/bib/bbac436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, artificial intelligence (AI)/machine learning has emerged as a plausible alternative to systems biology for the elucidation of biological phenomena and in attaining specified design objective in synthetic biology. Although considered highly disruptive with numerous notable successes so far, we seek to bring attention to both the fundamental and practical pitfalls of their usage, especially in illuminating emergent behaviors from chaotic or stochastic systems in biology. Without deliberating on their suitability and the required data qualities and pre-processing approaches beforehand, the research and development community could experience similar 'AI winters' that had plagued other fields. Instead, we anticipate the integration or combination of the two approaches, where appropriate, moving forward.
Collapse
Affiliation(s)
- Hock Chuan Yeo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | | |
Collapse
|
14
|
The automated Galaxy-SynBioCAD pipeline for synthetic biology design and engineering. Nat Commun 2022; 13:5082. [PMID: 36038542 PMCID: PMC9424320 DOI: 10.1038/s41467-022-32661-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Here we introduce the Galaxy-SynBioCAD portal, a toolshed for synthetic biology, metabolic engineering, and industrial biotechnology. The tools and workflows currently shared on the portal enables one to build libraries of strains producing desired chemical targets covering an end-to-end metabolic pathway design and engineering process from the selection of strains and targets, the design of DNA parts to be assembled, to the generation of scripts driving liquid handlers for plasmid assembly and strain transformations. Standard formats like SBML and SBOL are used throughout to enforce the compatibility of the tools. In a study carried out at four different sites, we illustrate the link between pathway design and engineering with the building of a library of E. coli lycopene-producing strains. We also benchmark our workflows on literature and expert validated pathways. Overall, we find an 83% success rate in retrieving the validated pathways among the top 10 pathways generated by the workflows.
Collapse
|
15
|
Shi Z, Liu P, Liao X, Mao Z, Zhang J, Wang Q, Sun J, Ma H, Ma Y. Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing. BIODESIGN RESEARCH 2022; 2022:9898461. [PMID: 37850146 PMCID: PMC10521697 DOI: 10.34133/2022/9898461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2022] [Indexed: 10/19/2023] Open
Abstract
Revolutionary breakthroughs in artificial intelligence (AI) and machine learning (ML) have had a profound impact on a wide range of scientific disciplines, including the development of artificial cell factories for biomanufacturing. In this paper, we review the latest studies on the application of data-driven methods for the design of new proteins, pathways, and strains. We first briefly introduce the various types of data and databases relevant to industrial biomanufacturing, which are the basis for data-driven research. Different types of algorithms, including traditional ML and more recent deep learning methods, are also presented. We then demonstrate how these data-based approaches can be applied to address various issues in cell factory development using examples from recent studies, including the prediction of protein function, improvement of metabolic models, and estimation of missing kinetic parameters, design of non-natural biosynthesis pathways, and pathway optimization. In the last section, we discuss the current limitations of these data-driven approaches and propose that data-driven methods should be integrated with mechanistic models to complement each other and facilitate the development of synthetic strains for industrial biomanufacturing.
Collapse
Affiliation(s)
- Zhenkun Shi
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Pi Liu
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Xiaoping Liao
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Zhitao Mao
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Jianqi Zhang
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| |
Collapse
|
16
|
Li X, Liu LP, Hassoun S. Boost-RS: boosted embeddings for recommender systems and its application to enzyme-substrate interaction prediction. Bioinformatics 2022; 38:2832-2838. [PMID: 35561204 PMCID: PMC9113267 DOI: 10.1093/bioinformatics/btac201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
MOTIVATION Despite experimental and curation efforts, the extent of enzyme promiscuity on substrates continues to be largely unexplored and under documented. Providing computational tools for the exploration of the enzyme-substrate interaction space can expedite experimentation and benefit applications such as constructing synthesis pathways for novel biomolecules, identifying products of metabolism on ingested compounds, and elucidating xenobiotic metabolism. Recommender systems (RS), which are currently unexplored for the enzyme-substrate interaction prediction problem, can be utilized to provide enzyme recommendations for substrates, and vice versa. The performance of Collaborative-Filtering (CF) RSs; however, hinges on the quality of embedding vectors of users and items (enzymes and substrates in our case). Importantly, enhancing CF embeddings with heterogeneous auxiliary data, specially relational data (e.g. hierarchical, pairwise or groupings), remains a challenge. RESULTS We propose an innovative general RS framework, termed Boost-RS that enhances RS performance by 'boosting' embedding vectors through auxiliary data. Specifically, Boost-RS is trained and dynamically tuned on multiple relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks to exploit relational data. To show the efficacy of Boost-RS for the enzyme-substrate prediction interaction problem, we apply the Boost-RS framework to several baseline CF models. We show that each of our auxiliary tasks boosts learning of the embedding vectors, and that contrastive learning using Boost-RS outperforms attribute concatenation and multi-label learning. We also show that Boost-RS outperforms similarity-based models. Ablation studies and visualization of learned representations highlight the importance of using contrastive learning on some of the auxiliary data in boosting the embedding vectors. AVAILABILITY AND IMPLEMENTATION A Python implementation for Boost-RS is provided at https://github.com/HassounLab/Boost-RS. The enzyme-substrate interaction data is available from the KEGG database (https://www.genome.jp/kegg/).
Collapse
Affiliation(s)
- Xinmeng Li
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
| | - Li-Ping Liu
- To whom correspondence should be addressed. and
| | | |
Collapse
|
17
|
Wang P, Schumacher AM, Shiu SH. Computational prediction of plant metabolic pathways. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102171. [PMID: 35078130 DOI: 10.1016/j.pbi.2021.102171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Uncovering genes encoding enzymes responsible for the biosynthesis of diverse plant metabolites is essential for metabolic engineering and production of plant metabolite-derived medicine. With the availability of multi-omics data for an ever-increasing number of plant species and the development of computational approaches, the metabolic pathways of many important plant compounds can be predicted, complementing a more traditional genetic and/or biochemical approach. Here, we summarize recent progress in predicting plant metabolic pathways using genome, transcriptome, proteome, interactome, and/or metabolome data, and the utility of integrating these data with machine learning to further improve metabolic pathway predictions.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Ally M Schumacher
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
18
|
SpeedyGenesXL: an Automated, High-Throughput Platform for the Preparation of Bespoke Ultralarge Variant Libraries for Directed Evolution. Methods Mol Biol 2022; 2461:67-83. [PMID: 35727444 DOI: 10.1007/978-1-0716-2152-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Directed evolution of proteins is a highly effective strategy for tailoring biocatalysts to a particular application, and is capable of engineering improvements such as kcat, thermostability and organic solvent tolerance. It is recognized that large and systematic libraries are required to navigate a protein's vast and rugged sequence landscape effectively, yet their preparation is nontrivial and commercial libraries are extremely costly. To address this, we have developed SpeedyGenesXL, an automated, high-throughput platform for the production of wild-type genes, Boolean OR, combinatorial, or combinatorial-OR-type libraries based on the SpeedyGenes methodology. Together this offers a flexible platform for library synthesis, capable of generating many different bespoke, diverse libraries simultaneously.
Collapse
|
19
|
Mey F, Clauwaert J, Van Huffel K, Waegeman W, De Mey M. Improving the performance of machine learning models for biotechnology: The quest for deus ex machina. Biotechnol Adv 2021; 53:107858. [PMID: 34695560 DOI: 10.1016/j.biotechadv.2021.107858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022]
Abstract
Machine learning is becoming an integral part of the Design-Build-Test-Learn cycle in biotechnology. Machine learning models learn from collected datasets such as omics data and predict a defined outcome, which has led to both production improvements and predictive tools in the field. Robust prediction of the behavior of microbial cell factories and production processes not only greatly increases our understanding of the function of such systems, but also provides significant savings of development time. However, many pitfalls when modeling biological data - bad fit, noisy data, model instability, low data quantity and imbalances in the data - cause models to suffer in their performance. Here we provide an accessible, in-depth analysis on the problems created by these pitfalls, as well as means of their detection and mediation, with a focus on supervised learning. Assessing the state of the art, we show that, currently, in-depth analyses of model performance are often absent and must be improved. This review provides a toolbox for the analysis of model robustness and performance, and simultaneously proposes a standard for the community to facilitate future work. It is further accompanied by an interactive online tutorial on the discussed issues.
Collapse
Affiliation(s)
- Friederike Mey
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Jim Clauwaert
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium
| | - Kirsten Van Huffel
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Willem Waegeman
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
20
|
Dutta K, Shityakov S, Khalifa I. New Trends in Bioremediation Technologies Toward Environment-Friendly Society: A Mini-Review. Front Bioeng Biotechnol 2021; 9:666858. [PMID: 34409018 PMCID: PMC8365754 DOI: 10.3389/fbioe.2021.666858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023] Open
Abstract
Today's environmental balance has been compromised by the unreasonable and sometimes dangerous actions committed by humans to maintain their dominance over the Earth's natural resources. As a result, oceans are contaminated by the different types of plastic trash, crude oil coming from mismanagement of transporting ships spilling it in the water, and air pollution due to increasing production of greenhouse gases, such as CO2 and CH4 etc., into the atmosphere. The lands, agricultural fields, and groundwater are also contaminated by the infamous chemicals viz., polycyclic aromatic hydrocarbons, pyrethroids pesticides, bisphenol-A, and dioxanes. Therefore, bioremediation might function as a convenient alternative to restore a clean environment. However, at present, the majority of bioremediation reports are limited to the natural capabilities of microbial enzymes. Synthetic biology with uncompromised supervision of ethical standards could help to outsmart nature's engineering, such as the CETCH cycle for improved CO2 fixation. Additionally, a blend of synthetic biology with machine learning algorithms could expand the possibilities of bioengineering. This review summarized current state-of-the-art knowledge of the data-assisted enzyme redesigning to actively promote new research on important enzymes to ameliorate the environment.
Collapse
Affiliation(s)
- Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Medinipur, India
| | - Sergey Shityakov
- Department of Chemoinformatics, Infochemistry Scientific Center, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Saint-Petersburg, Russia
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| |
Collapse
|
21
|
Visani GM, Hughes MC, Hassoun S. Enzyme Promiscuity Prediction Using Hierarchy-Informed Multi-Label Classification. Bioinformatics 2021; 37:2017–2024. [PMID: 33515234 PMCID: PMC8337005 DOI: 10.1093/bioinformatics/btab054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022] Open
Abstract
MOTIVATION As experimental efforts are costly and time consuming, computational characterization of enzyme capabilities is an attractive alternative. We present and evaluate several machine-learning models to predict which of 983 distinct enzymes, as defined via the Enzyme Commission (EC) numbers, are likely to interact with a given query molecule. Our data consists of enzyme-substrate interactions from the BRENDA database. Some interactions are attributed to natural selection and involve the enzyme's natural substrates. The majority of the interactions however involve non-natural substrates, thus reflecting promiscuous enzymatic activities. RESULTS We frame this "enzyme promiscuity prediction" problem as a multi-label classification task. We maximally utilize inhibitor and unlabelled data to train prediction models that can take advantage of known hierarchical relationships between enzyme classes. We report that a hierarchical multi-label neural network, EPP-HMCNF, is the best model for solving this problem, outperforming k-nearest neighbours similarity-based and other machine learning models. We show that inhibitor information during training consistently improves predictive power, particularly for EPP-HMCNF. We also show that all promiscuity prediction models perform worse under a realistic data split when compared to a random data split, and when evaluating performance on non-natural substrates compared to natural substrates. AVAILABILITY AND IMPLEMENTATION We provide Python code for EPP-HMCNF and other models in a repository termed EPP (Enzyme Promiscuity Prediction) at https://github.com/hassounlab/EPP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gian Marco Visani
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
| | - Michael C Hughes
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
22
|
Jang WD, Kim GB, Kim Y, Lee SY. Applications of artificial intelligence to enzyme and pathway design for metabolic engineering. Curr Opin Biotechnol 2021; 73:101-107. [PMID: 34358728 DOI: 10.1016/j.copbio.2021.07.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/07/2023]
Abstract
Metabolic engineering for developing industrial strains capable of overproducing bioproducts requires good understanding of cellular metabolism, including metabolic reactions and enzymes. However, metabolic pathways and enzymes involved are still unknown for many products of interest, which presents a key challenge in their biological production. This challenge can be partly overcome by constructing novel biosynthetic pathways through enzyme and pathway design approaches. With the increase in bio-big data, data-driven approaches using artificial intelligence (AI) techniques are allowing more advanced protein and pathway design. In this paper, we review recent studies on AI-aided protein engineering and design, focusing on directed evolution that uses AI approaches to efficiently construct mutant libraries. Also, recent works of AI-aided pathway design strategies, including template-based and template-free approaches, are discussed.
Collapse
Affiliation(s)
- Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeji Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
23
|
Mowbray M, Savage T, Wu C, Song Z, Cho BA, Del Rio-Chanona EA, Zhang D. Machine learning for biochemical engineering: A review. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108054] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
|
25
|
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed Evolution: Methodologies and Applications. Chem Rev 2021; 121:12384-12444. [PMID: 34297541 DOI: 10.1021/acs.chemrev.1c00260] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Directed evolution aims to expedite the natural evolution process of biological molecules and systems in a test tube through iterative rounds of gene diversifications and library screening/selection. It has become one of the most powerful and widespread tools for engineering improved or novel functions in proteins, metabolic pathways, and even whole genomes. This review describes the commonly used gene diversification strategies, screening/selection methods, and recently developed continuous evolution strategies for directed evolution. Moreover, we highlight some representative applications of directed evolution in engineering nucleic acids, proteins, pathways, genetic circuits, viruses, and whole cells. Finally, we discuss the challenges and future perspectives in directed evolution.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pu Xue
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mingfeng Cao
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tianhao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stephan T Lane
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering. Curr Opin Chem Biol 2021; 65:85-92. [PMID: 34280705 DOI: 10.1016/j.cbpa.2021.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023]
Abstract
Among the main learning methods reviewed in this study and used in synthetic biology and metabolic engineering are supervised learning, reinforcement and active learning, and in vitro or in vivo learning. In the context of biosynthesis, supervised machine learning is being exploited to predict biological sequence activities, predict structures and engineer sequences, and optimize culture conditions. Active and reinforcement learning methods use training sets acquired through an iterative process generally involving experimental measurements. They are applied to design, engineer, and optimize metabolic pathways and bioprocesses. The nascent but promising developments with in vitro and in vivo learning comprise molecular circuits performing simple tasks such as pattern recognition and classification.
Collapse
|
27
|
Poorinmohammad N, Kerkhoven EJ. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica. Biotechnol Bioeng 2021; 118:3640-3654. [PMID: 34129240 DOI: 10.1002/bit.27859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Concerns about climate change and the search for renewable energy sources together with the goal of attaining sustainable product manufacturing have boosted the use of microbial platforms to produce fuels and high-value chemicals. In this regard, Yarrowia lipolytica has been known as a promising yeast with potentials in diverse array of biotechnological applications such as being a host for different oleochemicals, organic acid, and recombinant protein production. Having a rapidly increasing number of molecular and genetic tools available, Y. lipolytica has been well studied amongst oleaginous yeasts and metabolic engineering has been used to explore its potentials. More recently, with the advancement in systems biotechnology and the implementation of mathematical modeling and high throughput omics data-driven approaches, in-depth understanding of cellular mechanisms of cell factories have been made possible resulting in enhanced rational strain design. In case of Y. lipolytica, these systems-level studies and the related cutting-edge technologies have recently been initiated which is expected to result in enabling the biotechnology sector to rationally engineer Y. lipolytica-based cell factories with favorable production metrics. In this regard, here, we highlight the current status of systems metabolic engineering research and assess the potential of this yeast for future cell factory design development.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
28
|
Transforming traditional nutrition paradigms with synthetic biology driven microbial production platforms. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
29
|
Lawson CE, Martí JM, Radivojevic T, Jonnalagadda SVR, Gentz R, Hillson NJ, Peisert S, Kim J, Simmons BA, Petzold CJ, Singer SW, Mukhopadhyay A, Tanjore D, Dunn JG, Garcia Martin H. Machine learning for metabolic engineering: A review. Metab Eng 2020; 63:34-60. [PMID: 33221420 DOI: 10.1016/j.ymben.2020.10.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources, and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing, and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.
Collapse
Affiliation(s)
- Christopher E Lawson
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Jose Manuel Martí
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Tijana Radivojevic
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Sai Vamshi R Jonnalagadda
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Reinhard Gentz
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nathan J Hillson
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Sean Peisert
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; University of California Davis, Davis, CA, 95616, USA
| | - Joonhoon Kim
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Pacific Northwest National Laboratory, Richland, 99354, WA, USA
| | - Blake A Simmons
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Steven W Singer
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, USA
| | - Deepti Tanjore
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, 94608, USA
| | | | - Hector Garcia Martin
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; DOE Agile BioFoundry, Emeryville, CA, 94608, USA; Basque Center for Applied Mathematics, 48009, Bilbao, Spain; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, USA.
| |
Collapse
|
30
|
Liu Y, Su A, Li J, Ledesma-Amaro R, Xu P, Du G, Liu L. Towards next-generation model microorganism chassis for biomanufacturing. Appl Microbiol Biotechnol 2020; 104:9095-9108. [DOI: 10.1007/s00253-020-10902-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
31
|
Directed evolution of enzymes. Emerg Top Life Sci 2020; 4:119-127. [PMID: 32893862 DOI: 10.1042/etls20200047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
There are near-to-infinite combinations of possibilities for evolution to happen within nature, making it yet impossible to predict how it occurs. However, science is now able to understand the mechanisms underpinning the evolution of biological systems and can use this knowledge to experimentally mimic nature. The fundamentals of evolution have been used in vitro to improve enzymes as suitable biocatalysts for applications in a process called 'Directed Evolution of Enzymes' (DEE). It replicates nature's evolutionary steps of introducing genetic variability into enzymes, selecting the fittest variants and transmitting the genetic information for the next generation. DEE has tailored biocatalysts for applications, expanding the repertoire of enzymatic activities, besides providing experimental evidences to support mechanistic hypotheses of molecular evolution and deepen our understanding about nature. In this mini review, I discuss the basic concepts of DEE, the most used methodologies and current technical advancements, providing examples of applications and perspectives.
Collapse
|
32
|
Machine learning applications in systems metabolic engineering. Curr Opin Biotechnol 2020; 64:1-9. [DOI: 10.1016/j.copbio.2019.08.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022]
|
33
|
Volk MJ, Lourentzou I, Mishra S, Vo LT, Zhai C, Zhao H. Biosystems Design by Machine Learning. ACS Synth Biol 2020; 9:1514-1533. [PMID: 32485108 DOI: 10.1021/acssynbio.0c00129] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biosystems such as enzymes, pathways, and whole cells have been increasingly explored for biotechnological applications. However, the intricate connectivity and resulting complexity of biosystems poses a major hurdle in designing biosystems with desirable features. As -omics and other high throughput technologies have been rapidly developed, the promise of applying machine learning (ML) techniques in biosystems design has started to become a reality. ML models enable the identification of patterns within complicated biological data across multiple scales of analysis and can augment biosystems design applications by predicting new candidates for optimized performance. ML is being used at every stage of biosystems design to help find nonobvious engineering solutions with fewer design iterations. In this review, we first describe commonly used models and modeling paradigms within ML. We then discuss some applications of these models that have already shown success in biotechnological applications. Moreover, we discuss successful applications at all scales of biosystems design, including nucleic acids, genetic circuits, proteins, pathways, genomes, and bioprocesses. Finally, we discuss some limitations of these methods and potential solutions as well as prospects of the combination of ML and biosystems design.
Collapse
|
34
|
Watanabe N, Murata M, Ogawa T, Vavricka CJ, Kondo A, Ogino C, Araki M. Exploration and Evaluation of Machine Learning-Based Models for Predicting Enzymatic Reactions. J Chem Inf Model 2020; 60:1833-1843. [PMID: 32053362 DOI: 10.1021/acs.jcim.9b00877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unannotated gene sequences in databases are increasing due to sequencing advances. Therefore, computational methods to predict functions of unannotated genes are needed. Moreover, novel enzyme discovery for metabolic engineering applications further encourages annotation of sequences. Here, enzyme functions are predicted using two general approaches, each including several machine learning algorithms. First, Enzyme-models (E-models) predict Enzyme Commission (EC) numbers from amino acid sequence information. Second, Substrate-Enzyme models (SE-models) are built to predict substrates of enzymatic reactions together with EC numbers, and Substrate-Enzyme-Product models (SEP-models) are built to predict substrates, products, and EC numbers. While accuracy of E-models is not optimal, SE-models and SEP-models predict EC numbers and reactions with high accuracy using all tested machine learning-based methods. For example, a single Random Forests-based SEP-model predicts EC first digits with an Average AUC score of over 0.94. Various metrics indicate that the current strategy of combining sequence and chemical structure information is effective at improving enzyme reaction prediction.
Collapse
Affiliation(s)
- Naoki Watanabe
- Department of Chemical Science and Engineering Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-8501 Japan
| | - Masahiro Murata
- Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Teppei Ogawa
- Mitsui Knowledge Industry Co., Ltd. (MKI), 2-3-33 Nakanoshima, Kita-ku, Osaka 530-0005, Japan
| | - Christopher J Vavricka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, Hyogo 657-8501 Japan
| | - Michihiro Araki
- Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin Sakyo-ku, Kyoto 606-8507, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
35
|
Yu X, Su H, Fan Z, Dong Y. Prediction of train wheel diameter based on Gaussian process regression optimized using a fast simulated annealing algorithm. PLoS One 2019; 14:e0226751. [PMID: 31887160 PMCID: PMC6936821 DOI: 10.1371/journal.pone.0226751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/03/2019] [Indexed: 11/28/2022] Open
Abstract
An algorithm to predict train wheel diameter based on Gaussian process regression (GPR) optimized using a fast simulated annealing algorithm (FSA-GPR) is proposed in this study to address the problem of dynamic decrease in wheel diameter with increase in mileage, which affects the measurement accuracy of train speed and location, as well as the hyper-parameter problem of the GPR in the traditional conjugate gradient algorithm. The algorithm proposed as well as other popular algorithms in the field, such as the traditional GPR algorithm, and GPR algorithms optimized using the artificial bee colony algorithm (ABC-GPR) or genetic algorithm (GA-GPR), were used to predict the wheel diameter of a DF11 train in a section of a railway during a period of major repairs. The results predicted by FSA-GPR was compared with other three algorithms as well as the real measured data from RMSE, MAE, R2 and Residual value. And the comparisons showed that the predictions obtained from the GPR optimized using FSA algorithm were more accurate than those based on the others. Therefore, this algorithm can be incorporated into the vehicle-mounted speed measurement module to automatically update the value of wheel diameter, thereby substantially reducing the manual work entailed therein and improving the effectiveness of measuring the speed and position of the train.
Collapse
Affiliation(s)
- Xiaoying Yu
- College of Automation and Electrical Engineering & Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Hongsheng Su
- College of Automation and Electrical Engineering & Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou, Gansu, China
- * E-mail:
| | - Zeyuan Fan
- School of Rail Transportation, Shandong Jiaotong University, Jinan, Shandong, China
| | - Yu Dong
- College of Automation and Electrical Engineering & Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering. Nat Methods 2019; 16:687-694. [PMID: 31308553 DOI: 10.1038/s41592-019-0496-6] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Protein engineering through machine-learning-guided directed evolution enables the optimization of protein functions. Machine-learning approaches predict how sequence maps to function in a data-driven manner without requiring a detailed model of the underlying physics or biological pathways. Such methods accelerate directed evolution by learning from the properties of characterized variants and using that information to select sequences that are likely to exhibit improved properties. Here we introduce the steps required to build machine-learning sequence-function models and to use those models to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to the use of machine learning for protein engineering, as well as the current literature and applications of this engineering paradigm. We illustrate the process with two case studies. Finally, we look to future opportunities for machine learning to enable the discovery of unknown protein functions and uncover the relationship between protein sequence and function.
Collapse
Affiliation(s)
- Kevin K Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zachary Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
37
|
Presnell KV, Alper HS. Systems Metabolic Engineering Meets Machine Learning: A New Era for Data-Driven Metabolic Engineering. Biotechnol J 2019; 14:e1800416. [PMID: 30927499 DOI: 10.1002/biot.201800416] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/20/2019] [Indexed: 12/30/2022]
Abstract
The recent increase in high-throughput capacity of 'omics datasets combined with advances and interest in machine learning (ML) have created great opportunities for systems metabolic engineering. In this regard, data-driven modeling methods have become increasingly valuable to metabolic strain design. In this review, the nature of 'omics is discussed and a broad introduction to the ML algorithms combining these datasets into predictive models of metabolism and metabolic rewiring is provided. Next, this review highlights recent work in the literature that utilizes such data-driven methods to inform various metabolic engineering efforts for different classes of application including product maximization, understanding and profiling phenotypes, de novo metabolic pathway design, and creation of robust system-scale models for biotechnology. Overall, this review aims to highlight the potential and promise of using ML algorithms with metabolic engineering and systems biology related datasets.
Collapse
Affiliation(s)
- Kristin V Presnell
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 100 E 24 St., Austin, TX, 78712, USA
| |
Collapse
|
38
|
Heckmann D, Lloyd CJ, Mih N, Ha Y, Zielinski DC, Haiman ZB, Desouki AA, Lercher MJ, Palsson BO. Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat Commun 2018; 9:5252. [PMID: 30531987 PMCID: PMC6286351 DOI: 10.1038/s41467-018-07652-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic turnover numbers in Escherichia coli based on integrated data on enzyme biochemistry, protein structure, and network context. We identify a diverse set of features that are consistently predictive for both in vivo and in vitro enzyme turnover rates, revealing novel protein structural correlates of catalytic turnover. We use our predictions to parameterize two mechanistic genome-scale modelling frameworks for proteome-limited metabolism, leading to significantly higher accuracy in the prediction of quantitative proteome data than previous approaches. The presented machine learning models thus provide a valuable tool for understanding metabolism and the proteome at the genome scale, and elucidate structural, biochemical, and network properties that underlie enzyme kinetics.
Collapse
Affiliation(s)
- David Heckmann
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
| | - Colton J Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Nathan Mih
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Yuanchi Ha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Zachary B Haiman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Abdelmoneim Amer Desouki
- Institute for Computer Science and Department of Biology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science and Department of Biology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
39
|
Li Y, Wang S, Umarov R, Xie B, Fan M, Li L, Gao X. DEEPre: sequence-based enzyme EC number prediction by deep learning. Bioinformatics 2018; 34:760-769. [PMID: 29069344 PMCID: PMC6030869 DOI: 10.1093/bioinformatics/btx680] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/20/2017] [Indexed: 11/15/2022] Open
Abstract
Motivation Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number. Results We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manually crafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre’s ability to capture the functional difference of enzyme isoforms. Availability and implementation The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yu Li
- Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), Computer, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sheng Wang
- Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), Computer, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ramzan Umarov
- Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), Computer, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bingqing Xie
- Computer Science Department, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xin Gao
- Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), Computer, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
40
|
Oyetunde T, Bao FS, Chen JW, Martin HG, Tang YJ. Leveraging knowledge engineering and machine learning for microbial bio-manufacturing. Biotechnol Adv 2018; 36:1308-1315. [DOI: 10.1016/j.biotechadv.2018.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
|
41
|
Carbonell P, Wong J, Swainston N, Takano E, Turner NJ, Scrutton NS, Kell DB, Breitling R, Faulon JL. Selenzyme: enzyme selection tool for pathway design. Bioinformatics 2018; 34:2153-2154. [PMID: 29425325 PMCID: PMC9881682 DOI: 10.1093/bioinformatics/bty065] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/06/2018] [Indexed: 02/02/2023] Open
Abstract
Summary Synthetic biology applies the principles of engineering to biology in order to create biological functionalities not seen before in nature. One of the most exciting applications of synthetic biology is the design of new organisms with the ability to produce valuable chemicals including pharmaceuticals and biomaterials in a greener; sustainable fashion. Selecting the right enzymes to catalyze each reaction step in order to produce a desired target compound is, however, not trivial. Here, we present Selenzyme, a free online enzyme selection tool for metabolic pathway design. The user is guided through several decision steps in order to shortlist the best candidates for a given pathway step. The tool graphically presents key information about enzymes based on existing databases and tools such as: similarity of sequences and of catalyzed reactions; phylogenetic distance between source organism and intended host species; multiple alignment highlighting conserved regions, predicted catalytic site, and active regions and relevant properties such as predicted solubility and transmembrane regions. Selenzyme provides bespoke sequence selection for automated workflows in biofoundries. Availability and implementation The tool is integrated as part of the pathway design stage into the design-build-test-learn SYNBIOCHEM pipeline. The Selenzyme web server is available at http://selenzyme.synbiochem.co.uk. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Jerry Wong
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology
| | - Neil Swainston
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology
| | - Eriko Takano
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology,School of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Nicholas J Turner
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology,School of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology,School of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Douglas B Kell
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology,School of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Rainer Breitling
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology,School of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Jean-Loup Faulon
- BBSRC/EPSRC Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology,School of Chemistry, The University of Manchester, Manchester M1 7DN, UK,MICALIS, INRA-AgroParisTech, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| |
Collapse
|
42
|
Underground metabolism: network-level perspective and biotechnological potential. Curr Opin Biotechnol 2018; 49:108-114. [DOI: 10.1016/j.copbio.2017.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
|
43
|
Kumar A, Wang L, Ng CY, Maranas CD. Pathway design using de novo steps through uncharted biochemical spaces. Nat Commun 2018; 9:184. [PMID: 29330441 PMCID: PMC5766603 DOI: 10.1038/s41467-017-02362-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Existing retrosynthesis tools generally traverse production routes from a source to a sink metabolite using known enzymes or de novo steps. Generally, important considerations such as blending known transformations with putative steps, complexity of pathway topology, mass conservation, cofactor balance, thermodynamic feasibility, microbial chassis selection, and cost are largely dealt with in a posteriori fashion. The computational procedure we present here designs bioconversion routes while simultaneously considering any combination of the aforementioned design criteria. First, we track and codify as rules all reaction centers using a prime factorization-based encoding technique (rePrime). Reaction rules and known biotransformations are then simultaneously used by the pathway design algorithm (novoStoic) to trace both metabolites and molecular moieties through balanced bio-conversion strategies. We demonstrate the use of novoStoic in bypassing steps in existing pathways through putative transformations, assembling complex pathways blending both known and putative steps toward pharmaceuticals, and postulating ways to biodegrade xenobiotics.
Collapse
Affiliation(s)
- Akhil Kumar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
44
|
Delépine B, Duigou T, Carbonell P, Faulon JL. RetroPath2.0: A retrosynthesis workflow for metabolic engineers. Metab Eng 2018; 45:158-170. [DOI: 10.1016/j.ymben.2017.12.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/03/2017] [Accepted: 12/05/2017] [Indexed: 12/01/2022]
|
45
|
Carbonell P, Koch M, Duigou T, Faulon JL. Enzyme Discovery: Enzyme Selection and Pathway Design. Methods Enzymol 2018; 608:3-27. [PMID: 30173766 DOI: 10.1016/bs.mie.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this protocol, we describe in silico design methods that can assist in the engineering of production pathways that are based on enzymatic transformations. The described protocols are the basis for automated processes to be integrated into an iterative Design-Build-Test-Learn cycle in synthetic biology for chemical production. Selecting the right enzyme sequence for a desired biocatalytic activity from the extensive catalogue of sequences available in databases is challenging and can dramatically influence the success of bioproducing chemical compounds. A method for enzyme selection is presented that helps identifying candidate enzyme sequences through a scoring approach that considers not only sequence homology but also reaction similarity. Selecting a viable biochemical pathway for compound production requires screening large sets of reactions in a process involving combinatorial complexity. A method for pathway design using retrosynthesis is presented. The protocol allows the discovery of alternative chemical pathways leading to the final product by using reaction rules of selectable degree of specificity. The protocols can be reversed through clustering discovery and product identification processes. The integration of these protocols into a general pipeline provides a toolbox for enhanced automated synthetic biology design and metabolic engineering.
Collapse
Affiliation(s)
- Pablo Carbonell
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Mathilde Koch
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Duigou
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Loup Faulon
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom; Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France; School of Chemistry, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
46
|
Koch M, Duigou T, Carbonell P, Faulon JL. Molecular structures enumeration and virtual screening in the chemical space with RetroPath2.0. J Cheminform 2017; 9:64. [PMID: 29260340 PMCID: PMC5736515 DOI: 10.1186/s13321-017-0252-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/08/2017] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Network generation tools coupled with chemical reaction rules have been mainly developed for synthesis planning and more recently for metabolic engineering. Using the same core algorithm, these tools apply a set of rules to a source set of compounds, stopping when a sink set of compounds has been produced. When using the appropriate sink, source and rules, this core algorithm can be used for a variety of applications beyond those it has been developed for. RESULTS Here, we showcase the use of the open source workflow RetroPath2.0. First, we mathematically prove that we can generate all structural isomers of a molecule using a reduced set of reaction rules. We then use this enumeration strategy to screen the chemical space around a set of monomers and predict their glass transition temperatures, as well as around aminoglycosides to search structures maximizing antibacterial activity. We also perform a screening around aminoglycosides with enzymatic reaction rules to ensure biosynthetic accessibility. We finally use our workflow on an E. coli model to complete E. coli metabolome, with novel molecules generated using promiscuous enzymatic reaction rules. These novel molecules are searched on the MS spectra of an E. coli cell lysate interfacing our workflow with OpenMS through the KNIME Analytics Platform. CONCLUSION We provide an easy to use and modify, modular, and open-source workflow. We demonstrate its versatility through a variety of use cases including molecular structure enumeration, virtual screening in the chemical space, and metabolome completion. Because it is open source and freely available on MyExperiment.org, workflow community contributions should likely expand further the features of the tool, even beyond the use cases presented in the paper.
Collapse
Affiliation(s)
- Mathilde Koch
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Thomas Duigou
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Pablo Carbonell
- SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. .,CNRS-UMR8030/Laboratoire iSSB, Université Paris-Saclay, 91000, Évry, France.
| |
Collapse
|
47
|
Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 2017; 47:67-82. [DOI: 10.1016/j.copbio.2017.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|
48
|
SYNBIOCHEM Synthetic Biology Research Centre, Manchester - A UK foundry for fine and speciality chemicals production. Synth Syst Biotechnol 2016; 1:271-275. [PMID: 29062953 PMCID: PMC5625740 DOI: 10.1016/j.synbio.2016.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The UK Synthetic Biology Research Centre, SYNBIOCHEM, hosted by the Manchester Institute of Biotechnology at the University of Manchester is delivering innovative technology platforms to facilitate the predictable engineering of microbial bio-factories for fine and speciality chemicals production. We provide an overview of our foundry activities that are being applied to grand challenge projects to deliver innovation in bio-based chemicals production for industrial biotechnology.
Collapse
|