1
|
Fan J, Zhang Y, Li W, Li Z, Zhang D, Mo Q, Cao M, Yuan J. Multidimensional Optimization of Saccharomyces cerevisiae for Carotenoid Overproduction. BIODESIGN RESEARCH 2024; 6:0026. [PMID: 38213763 PMCID: PMC10777738 DOI: 10.34133/bdr.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Microbial synthesis of carotenoids is a highly desirable alternative to plant extraction and chemical synthesis. In this study, we investigated multidimensional strategies to improve the carotenoid synthesis in the industrial workhorse of Saccharomyces cerevisiae. First, we rewired the yeast central metabolism by optimizing non-oxidative glycolysis pathway for an improved acetyl-CoA supply. Second, we restricted the consumption of farnesyl pyrophosphate (FPP) by the down-regulation of squalene synthase using the PEST degron. Third, we further explored the human lipid binding/transfer protein saposin B (hSapB)-mediated metabolic sink for an enhanced storage of lipophilic carotenoids. Last, the copper-induced GAL expression system was engineered to function in the yeast-peptone-dextrose medium for an increased biomass accumulation. By combining the abovementioned strategies, the final engineered yeast produced 166.79 ± 10.43 mg/l β-carotene in shake flasks, which was nearly 5-fold improvement of the parental carotenoid-producing strain. Together, we envision that multidimensional strategies reported here might be applicable to other hosts for the future industrial development of carotenoid synthesis from renewable feedstocks.
Collapse
Affiliation(s)
- Jian Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Wenhao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Zhizhen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Danli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Mingfeng Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| |
Collapse
|
2
|
Ekim Kocabey A, Schneiter R. Human lipocalins bind and export fatty acids through the secretory pathway of yeast cells. Front Microbiol 2024; 14:1309024. [PMID: 38328584 PMCID: PMC10849133 DOI: 10.3389/fmicb.2023.1309024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
The activation of fatty acids to their acyl-CoA derivatives is a crucial step for their integration into more complex lipids or their degradation via beta-oxidation. Yeast cells employ five distinct acyl-CoA synthases to facilitate this ATP-dependent activation of acyl chains. Notably, mutant cells that are deficient in two of these fatty acid-activating (FAA) enzymes, namely, Faa1 and Faa4, do not take up free fatty acids but rather export them out of the cell. This unique fatty acid export pathway depends on small, secreted pathogenesis-related yeast proteins (Pry). In this study, we investigate whether the expression of human fatty acid-binding proteins, including Albumin, fatty acid-binding protein 4 (Fabp4), and three distinct lipocalins (ApoD, Lcn1, and Obp2a), could promote fatty acid secretion in yeast. To optimize the expression and secretion of these proteins, we systematically examined various signal sequences in both low-copy and high-copy number plasmids. Our findings reveal that directing these fatty-acid binding proteins into the secretory pathway effectively promotes fatty acid secretion from a sensitized quadruple mutant model strain (faa1∆ faa4∆ pry1∆ pry3∆). Furthermore, the level of fatty acid secretion exhibited a positive correlation with the efficiency of protein secretion. Importantly, the expression of all human lipid-binding proteins rescued Pry-dependent fatty acid secretion, resulting in the secretion of both long-chain saturated and unsaturated fatty acids. These results not only affirm the in vitro binding capabilities of lipocalins to fatty acids but also present a novel avenue for enhancing the secretion of valuable lipidic compounds. Given the growing interest in utilizing yeast as a cellular factory for producing poorly soluble compounds and the potential of lipocalins as platforms for engineering substrate-binding specificity, our model is considered as a powerful tool for promoting the secretion of high-value lipid-based molecules.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Development of shuttle vectors for rapid prototyping of engineered Synechococcus sp. PCC7002. Appl Microbiol Biotechnol 2022; 106:8169-8181. [PMID: 36401644 DOI: 10.1007/s00253-022-12289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/18/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are of particular interest for chemical production as they can assimilate CO2 and use solar energy to power chemical synthesis. However, unlike the model microorganism of Escherichia coli, the availability of genetic toolboxes for rapid proof-of-concept studies in cyanobacteria is generally lacking. In this study, we first characterized a set of promoters to efficiently drive gene expressions in the marine cyanobacterium Synechococcus sp. PCC7002. We identified that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002. Next, a set of shuttle vectors was constructed based on the endogenous pAQ1 plasmid to facilitate the rapid pathway assembly. Moreover, we used the shuttle vectors to modularly optimize the amorpha-4,11-diene synthesis in PCC7002. By modularly optimizing the metabolic pathway, we managed to redistribute the central metabolism toward the amorpha-4,11-diene production in PCC7002 with enhanced product titer. Taken together, the plasmid toolbox developed in this study will greatly accelerate the generation of genetically engineered PCC7002. KEY POINTS: • Promoter characterization revealed that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002 • A set of shuttle vectors with different antibiotic selection markers was constructed based on endogenous pAQ1 plasmid • By modularly optimizing the metabolic pathway, amorpha-4,11-diene production in PCC7002 was improved.
Collapse
|
4
|
Fan J, Xu W, Xu X, Wang Y. Production of Coenzyme Q 10 by microbes: an update. World J Microbiol Biotechnol 2022; 38:194. [PMID: 35984526 DOI: 10.1007/s11274-022-03326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Coenzyme Q10 (CoQ10) is the main CoQ species in human and is used extensively in food, cosmetic and medicine industries because of its antioxidant properties and its benefit in prophylactic medicine and therapy for a variety of diseases. Among various approaches to increase the production of CoQ10, microbial fermentation is the most effective. As knowledge of the biosynthetic enzymes and regulatory mechanisms modulating CoQ10 production increases, opportunities arise for metabolic engineering of CoQ10 in microbial hosts. In this review, we present various strategies used up to date to improve CoQ10 production and focus on metabolic engineering of CoQ10 overproduction in microbes. General strategies of metabolic engineering include providing sufficient precursors for CoQ10, increasing metabolic fluxes, and expanding storage capacity for CoQ10. Based on these strategies, CoQ10 production has been significantly improved in natural CoQ10 producers, as well as in heterologous hosts.
Collapse
Affiliation(s)
- Jinbo Fan
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an, China
- School of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Wen Xu
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an, China
- School of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Xi Xu
- School of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an, China.
- School of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
5
|
Xu W, Ma X, Yao J, Wang D, Li W, Liu L, Shao L, Wang Y. Increasing coenzyme Q 10 yield from Rhodopseudomonas palustris by expressing rate-limiting enzymes and blocking carotenoid and hopanoid pathways. Lett Appl Microbiol 2021; 73:88-95. [PMID: 33783839 DOI: 10.1111/lam.13479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022]
Abstract
Coenzyme Q10 (CoQ10 ), a strong antioxidant, is used extensively in food, cosmetic and medicine industries. A natural producer, Rhodopseudomonas palustris, was engineered to overproduce CoQ10 . For increasing the CoQ10 content, crtB gene was deleted to block the carotenoid pathway. crtB gene deletion led to 33% improvement of CoQ10 content over the wild type strain. However, it was found that the yield of hopanoids was also increased by competing for the precursors from carotenoid pathway with CoQ10 pathway. To further increase the CoQ10 content, hopanoid pathway was blocked by deleting shc gene, resulting in R. palustris [Δshc, ΔcrtB] to produce 4·7 mg g-1 DCW CoQ10 , which was 1·2 times higher than the CoQ10 content in the wild type strain. The common strategy of co-expression of rate-limiting enzymes (DXS, DPS and UbiA) was combined with the pathway blocking method resulted in 8·2 mg g-1 DCW of CoQ10 , which was 2·9 times higher than that of wild type strain. The results suggested a synergistic effect among different metabolic engineering strategies. This study demonstrates the potential of R. palustris for CoQ10 production and provides viable strategies to increase CoQ10 titer.
Collapse
Affiliation(s)
- W Xu
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - X Ma
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - J Yao
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - D Wang
- Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, China
| | - W Li
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Li Liu
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - L Shao
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Y Wang
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Yuan J, Mo Q, Fan C. New Set of Yeast Vectors for Shuttle Expression in Escherichia coli. ACS OMEGA 2021; 6:7175-7180. [PMID: 33748631 PMCID: PMC7970545 DOI: 10.1021/acsomega.1c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Promoters that play an essential role in the gene regulation are of particular interest to the synthetic biology communities. Recent advances in high-throughput DNA sequencing have greatly increased the breadth of new genetic parts. The development of promoters with broad host properties could enable rapid phenotyping of genetic constructs in different hosts. In this study, we discovered that the GAL1/10 bidirectional promoter from Saccharomyces cerevisiae could be used for shuttle expression in Escherichia coli. Further investigation revealed that the GAL1/10 bidirectional promoter is subjected to catabolite repression in E. coli. We next constructed a set of Golden-Gate assembly vectors for shuttle expression between S. cerevisiae and E. coli. The utility of shuttle vectors was demonstrated for rapid phenotyping of a multigene pathway for cinnamyl alcohol production. Taken together, our work opens a new avenue for the future development of broad host expression systems between prokaryotic and eukaryotic hosts.
Collapse
|
7
|
Zhang L, Liu L, Wang KF, Xu L, Zhou L, Wang W, Li C, Xu Z, Shi T, Chen H, Li Y, Xu H, Yang X, Zhu Z, Chen B, Li D, Zhan G, Zhang SL, Zhang LX, Tan GY. Phosphate limitation increases coenzyme Q 10 production in industrial Rhodobacter sphaeroides HY01. Synth Syst Biotechnol 2019; 4:212-219. [PMID: 31890925 PMCID: PMC6909082 DOI: 10.1016/j.synbio.2019.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an important component of the respiratory chain in humans and some bacteria. As a high-value-added nutraceutical antioxidant, CoQ10 has excellent capacity to prevent cardiovascular disease. The content of CoQ10 in the industrial Rhodobacter sphaeroides HY01 is hundreds of folds higher than normal physiological levels. In this study, we found that overexpression or optimization of the synthetic pathway failed CoQ10 overproduction in the HY01 strain. Moreover, under phosphate- limited conditions (decreased phosphate or in the absence of inorganic phosphate addition), CoQ10 production increased significantly by 12% to220 mg/L, biomass decreased by 12%, and the CoQ10 productivity of unit cells increased by 27%. In subsequent fed-batch fermentation, CoQ10 production reached 272 mg/L in the shake-flask fermentation and 1.95 g/L in a 100-L bioreactor under phosphate limitation. Furthermore, to understand the mechanism associated with CoQ10 overproduction under phosphate- limited conditions, the comparatve transcriptome analysis was performed. These results indicated that phosphate limitation combined with glucose fed-batch fermentation represented an effective strategy for CoQ10 production in the HY01. Phosphate limitation induced a pleiotropic effect on cell metabolism, and that improved CoQ10 biosynthesis efficiency was possibly related to the disturbance of energy metabolism and redox potential.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Leshi Liu
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Ke-Feng Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Lan Xu
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 Beichen West Road, Beijing, 100101, China
| | - Liming Zhou
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 Beichen West Road, Beijing, 100101, China
| | - Chuan Li
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Zheng Xu
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), No.1 Beichen West Road, Beijing, 100101, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Haihong Chen
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Yuanhang Li
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Hui Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - XiuLiang Yang
- Shandong Jincheng Bio-Pharmaceutical Co., Ltd, No. 117 Qixing River Road, Zibo, 255130, China
| | - Zhichun Zhu
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Guanghuang Zhan
- Inner Mongolia Kingdomway Pharmaceutical Co., Ltd, Tuoketuo Power Industrial Park, Hohhot, 010206, China
| | - Si-Liang Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Li-Xin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), And School of Biotechnology, East China University of Science and Technology (ECUST), No. 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
8
|
Wei L, Wang H, Xu N, Zhou W, Ju J, Liu J, Ma Y. Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Appl Microbiol Biotechnol 2018; 103:1325-1338. [DOI: 10.1007/s00253-018-9547-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
9
|
Payet LA, Leroux M, Willison JC, Kihara A, Pelosi L, Pierrel F. Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast. Cell Chem Biol 2016; 23:1241-1250. [PMID: 27693056 DOI: 10.1016/j.chembiol.2016.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 11/17/2022]
Abstract
Coenzyme Q (Q) is a redox lipid that is central for the energetic metabolism of eukaryotes. The biosynthesis of Q from the aromatic precursor 4-hydroxybenzoic acid (4-HB) is understood fairly well. However, biosynthetic details of how 4-HB is produced from tyrosine remain elusive. Here, we provide key insights into this long-standing biosynthetic problem by uncovering molecular details of the first and last reactions of the pathway in the yeast Saccharomyces cerevisiae, namely the deamination of tyrosine to 4-hydroxyphenylpyruvate by Aro8 and Aro9, and the oxidation of 4-hydroxybenzaldehyde to 4-HB by Hfd1. Inactivation of the HFD1 gene in yeast resulted in Q deficiency, which was rescued by the human enzyme ALDH3A1. This suggests that a similar pathway operates in animals, including humans, and led us to propose that patients with genetically unassigned Q deficiency should be screened for mutations in aldehyde dehydrogenase genes, especially ALDH3A1.
Collapse
Affiliation(s)
- Laurie-Anne Payet
- Université Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), 38000 Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, 38000 Grenoble, France
| | - Mélanie Leroux
- CEA-Grenoble, DRF-BIG-CBM, UMR5249, 38000 Grenoble, France
| | | | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ludovic Pelosi
- Université Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), 38000 Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, 38000 Grenoble, France
| | - Fabien Pierrel
- Université Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), 38000 Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, 38000 Grenoble, France.
| |
Collapse
|