1
|
Bhakta S, Tsukahara T. Restoration of cytidine to uridine genetic code using an MS2-APOBEC1 artificial enzymatic approach. Methods Enzymol 2025; 713:271-285. [PMID: 40250957 DOI: 10.1016/bs.mie.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
By employing site-directed RNA editing (SDRE) to restore point-mutated RNA molecules, it is possible to change gene-encoded information and synthesize proteins with different functionality from a single gene. Thymine (T) to cytosine (C) point mutations cause various genetic disorders, and when they occur in protein-coding regions, C-to-uridine (U) RNA changes can lead to non-synonymous alterations. By joining the deaminase domain of apolipoprotein B messenger RNA (mRNA) editing catalytic polypeptide 1 (APOBEC1) with a guide RNA (gRNA) complementary to a target mRNA, we created an artificial RNA editase. We used an mRNA encoding blue fluorescent protein (BFP), obtained from the green fluorescent protein (GFP) gene through the introduction of a T > C mutation, as our target RNA. In a proof of principle experiment, we reverted the T > C mutation at the RNA level using our APOBEC1 site-directed RNA editing system, recovering GFP signal. Sanger sequencing of cDNA from transfected cells and polymerase chain reaction-restriction length polymorphism analysis validated this result, indicating an editing of approximately 21 %. Our successful development of an artificial RNA editing system using the deaminase APOBEC1, in conjunction with the MS2 system, may lead to the development of treatments for genetic diseases based on the restoration of specific types of wild type sequences at the mRNA level.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa 923-1292, Japan; Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa 923-1292, Japan; GeCoRT Co., Ltd., Kanagawa, 220-0011, Japan.
| |
Collapse
|
2
|
Kiran Kumar KD, Singh S, Schmelzle SM, Vogel P, Fruhner C, Hanswillemenke A, Brun A, Wettengel J, Füll Y, Funk L, Mast V, Botsch JJ, Reautschnig P, Li JB, Stafforst T. An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification. Nat Commun 2024; 15:6615. [PMID: 39103360 DOI: 10.1038/s41467-024-50395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects. For the JAK/STAT pathway, we demonstrate both, negative and positive regulation. To achieve high editing efficiency over a broad codon scope, we applied an improved version of the SNAP-ADAR tool. The transient nature of RNA base editing enables the comparably fast (hours to days), dose-dependent (thus partial) and reversible manipulation of regulatory sites, which is a key advantage over DNA (base) editing approaches. In summary, PTM interference might become a valuable field of application of RNA base editing.
Collapse
Affiliation(s)
| | - Shubhangi Singh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Paul Vogel
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Adrian Brun
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jacqueline Wettengel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Yvonne Füll
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Lukas Funk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Valentin Mast
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - J Josephine Botsch
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Philipp Reautschnig
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Hanswillemenke A, Hofacker DT, Sorgenfrei M, Fruhner C, Franz-Wachtel M, Schwarzer D, Maček B, Stafforst T. Profiling the interactome of oligonucleotide drugs by proximity biotinylation. Nat Chem Biol 2024; 20:555-565. [PMID: 38233583 PMCID: PMC11062921 DOI: 10.1038/s41589-023-01530-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Drug-ID is a novel method applying proximity biotinylation to identify drug-protein interactions inside living cells. The covalent conjugation of a drug with a biotin ligase enables targeted biotinylation and identification of the drug-bound proteome. We established Drug-ID for two small-molecule drugs, JQ1 and SAHA, and applied it for RNaseH-recruiting antisense oligonucleotides (ASOs). Drug-ID profiles the drug-protein interactome de novo under native conditions, directly inside living cells and at pharmacologically effective drug concentrations. It requires minimal amounts of cell material and might even become applicable in vivo. We studied the dose-dependent aggregation of ASOs and the effect of different wing chemistries (locked nucleic acid, 2'-methoxyethyl and 2'-Fluoro) and ASO lengths on the interactome. Finally, we demonstrate the detection of stress-induced, intracellular interactome changes (actinomycin D treatment) with an in situ variant of the approach, which uses a recombinant biotin ligase and does not require genetic manipulation of the target cell.
Collapse
Affiliation(s)
| | | | - Michèle Sorgenfrei
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Boris Maček
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Kumar S, Nabet B. A chemical magnet: Approaches to guide precise protein localization. Bioorg Med Chem 2024; 102:117672. [PMID: 38461554 PMCID: PMC11064470 DOI: 10.1016/j.bmc.2024.117672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Small molecules that chemically induce proximity between two proteins have been widely used to precisely modulate protein levels, stability, and activity. Recently, several studies developed novel strategies that employ heterobifunctional molecules that co-opt shuttling proteins to control the spatial localization of a target protein, unlocking new potential within this domain. Together, these studies lay the groundwork for novel targeted protein relocalization modalities that can rewire the protein circuitry and interactome to influence biological outcomes.
Collapse
Affiliation(s)
- Saurav Kumar
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
5
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Latifi N, Mack AM, Tellioglu I, Di Giorgio S, Stafforst T. Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S. Nucleic Acids Res 2023; 51:e84. [PMID: 37462074 PMCID: PMC10450179 DOI: 10.1093/nar/gkad598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Site-directed RNA base editing enables the transient and dosable change of genetic information and represents a recent strategy to manipulate cellular processes, paving ways to novel therapeutic modalities. While tools to introduce adenosine-to-inosine changes have been explored quite intensively, the engineering of precise and programmable tools for cytidine-to-uridine editing is somewhat lacking behind. Here we demonstrate that the cytidine deaminase domain evolved from the ADAR2 adenosine deaminase, taken from the RESCUE-S tool, provides very efficient and highly programmable editing when changing the RNA targeting mechanism from Cas13-based to SNAP-tag-based. Optimization of the guide RNA chemistry further allowed to dramatically improve editing yields in the difficult-to-edit 5'-CCN sequence context thus improving the substrate scope of the tool. Regarding editing efficiency, SNAP-CDAR-S outcompeted the RESCUE-S tool clearly on all tested targets, and was highly superior in perturbing the β-catenin pathway. NGS analysis showed similar, moderate global off-target A-to-I and C-to-U editing for both tools.
Collapse
Affiliation(s)
- Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Aline Maria Mack
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Irem Tellioglu
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Engineering, University of Heidelberg, 69120 Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine University Tuebingen, Germany
| |
Collapse
|
7
|
Zhang Y, Feng D, Mu G, Wang Q, Wang J, Luo Y, Tang X. Light-triggered site-directed RNA editing by endogenous ADAR1 with photolabile guide RNA. Cell Chem Biol 2023:S2451-9456(23)00149-6. [PMID: 37295425 DOI: 10.1016/j.chembiol.2023.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/21/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
RNA A-to-I editing is a post-transcriptional modification pervasively occurring in cells. Artificial intervention of A-to-I editing at specific sites of RNA could also be achieved with guide RNA and exogenous ADAR enzymes. In contrast to previous fused SNAP-ADAR enzymes for light-driven RNA A-to-I editing, we developed photo-caged antisense guide RNA oligonucleotides with simple 3'-terminal cholesterol modification, and successfully achieved light-triggered site-specific RNA A-to-I editing for the first time utilizing endogenous ADAR enzymes. Our caged A-to-I editing system effectively implemented light-dependent point mutation of mRNA transcripts of both exogenous and endogenous genes in living cells and 3D tumorspheres, as well as spatial regulation of EGFP expression, which provides a new approach for precise manipulation of RNA editing.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Di Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guanqun Mu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yun Luo
- Shanghai Primerna Biotechnology Co. Ltd, Shanghai 201600, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
8
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
9
|
Song J, Liu C, Li B, Liu L, Zeng L, Ye Z, Wu W, Zhu L, Hu B. Synthetic peptides for the precise transportation of proteins of interests to selectable subcellular areas. Front Bioeng Biotechnol 2023; 11:1062769. [PMID: 36890909 PMCID: PMC9986269 DOI: 10.3389/fbioe.2023.1062769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Proteins, as gifts from nature, provide structure, sequence, and function templates for designing biomaterials. As first reported here, one group of proteins called reflectins and derived peptides were found to present distinct intracellular distribution preferences. Taking their conserved motifs and flexible linkers as Lego bricks, a series of reflectin-derivates were designed and expressed in cells. The selective intracellular localization property leaned on an RMs (canonical conserved reflectin motifs)-replication-determined manner, suggesting that these linkers and motifs were constructional fragments and ready-to-use building blocks for synthetic design and construction. A precise spatiotemporal application demo was constructed in the work by integrating RLNto2 (as one representative of a synthetic peptide derived from RfA1) into the Tet-on system to effectively transport cargo peptides into nuclei at selective time points. Further, the intracellular localization of RfA1 derivatives was spatiotemporally controllable with a CRY2/CIB1 system. At last, the functional homogeneities of either motifs or linkers were verified, which made them standardized building blocks for synthetic biology. In summary, the work provides a modularized, orthotropic, and well-characterized synthetic-peptide warehouse for precisely regulating the nucleocytoplasmic localization of proteins.
Collapse
Affiliation(s)
- Junyi Song
- *Correspondence: Junyi Song, ; Lingyun Zhu, ; Biru Hu,
| | | | | | | | | | | | | | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Biru Hu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
10
|
Reautschnig P, Wahn N, Wettengel J, Schulz AE, Latifi N, Vogel P, Kang TW, Pfeiffer LS, Zarges C, Naumann U, Zender L, Li JB, Stafforst T. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat Biotechnol 2022; 40:759-768. [PMID: 34980913 DOI: 10.1038/s41587-021-01105-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 09/23/2021] [Indexed: 11/09/2022]
Abstract
RNA base editing represents a promising alternative to genome editing. Recent approaches harness the endogenous RNA-editing enzyme adenosine deaminase acting on RNA (ADAR) to circumvent problems caused by ectopic expression of engineered editing enzymes, but suffer from sequence restriction, lack of efficiency and bystander editing. Here we present in silico-optimized CLUSTER guide RNAs that bind their target messenger RNAs in a multivalent fashion, achieve editing with high precision and efficiency and enable targeting of sequences that were not accessible using previous gRNA designs. CLUSTER gRNAs can be genetically encoded and delivered using viruses, and are active in a wide range of cell lines. In cell culture, CLUSTER gRNAs achieve on-target editing of endogenous transcripts with yields of up to 45% without bystander editing. In vivo, CLUSTER gRNAs delivered to mouse liver by hydrodynamic tail vein injection edited reporter constructs at rates of up to 10%. The CLUSTER approach opens avenues for drug development in the field of RNA base editing.
Collapse
Affiliation(s)
- Philipp Reautschnig
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Jacqueline Wettengel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Annika E Schulz
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paul Vogel
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Tae-Won Kang
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium, Partner Site Tübingen, German Cancer Research Center, Heidelberg, Germany
| | - Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Christine Zarges
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Hertie Institute for Clinical Brain Research, Center of Neurology, University Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, Tübingen, Germany
- German Cancer Research Consortium, Partner Site Tübingen, German Cancer Research Center, Heidelberg, Germany
- DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy', University of Tübingen, Tübingen, Germany
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol 2022; 40:946-955. [PMID: 35145313 DOI: 10.1038/s41587-021-01180-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
Current methods for programmed RNA editing using endogenous ADAR enzymes and engineered ADAR-recruiting RNAs (arRNAs) suffer from low efficiency and bystander off-target editing. Here, we describe LEAPER 2.0, an updated version of LEAPER that uses covalently closed circular arRNAs, termed circ-arRNAs. We demonstrate on average ~3.1-fold higher editing efficiency than their linear counterparts when expressed in cells or delivered as in vitro-transcribed circular RNA oligonucleotides. To lower off-target editing we deleted pairings of uridines with off-target adenosines, which almost completely eliminated bystander off-target adenosine editing. Engineered circ-arRNAs enhanced the efficiency and fidelity of editing endogenous CTNNB1 and mutant TP53 transcripts in cell culture. Delivery of circ-arRNAs using adeno-associated virus in a mouse model of Hurler syndrome corrected the pathogenic point mutation and restored α-L-iduronidase catalytic activity, lowering glycosaminoglycan accumulation in the liver. LEAPER 2.0 provides a new design of arRNA that enables more precise, efficient RNA editing with broad applicability for therapy and basic research.
Collapse
|
12
|
Stroppel AS, Lappalainen R, Stafforst T. Controlling Site-Directed RNA Editing by Chemically Induced Dimerization. Chemistry 2021; 27:12300-12304. [PMID: 34169589 PMCID: PMC8456898 DOI: 10.1002/chem.202101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/24/2022]
Abstract
Various RNA‐targeting approaches have been engineered to modify specific sites on endogenous transcripts, breaking new ground for a variety of basic research tools and promising clinical applications in the future. Here, we combine site‐directed adenosine‐to‐inosine RNA editing with chemically induced dimerization. Specifically, we achieve tight and dose‐dependent control of the editing reaction with gibberellic acid, and obtain editing yields up to 20 % and 44 % in the endogenous STAT1 and GAPDH transcript in cell culture. Furthermore, the disease‐relevant MECP2 R106Q mutation was repaired with editing yields up to 42 %. The introduced principle will enable new applications where temporal or spatiotemporal control of an RNA‐targeting mechanism is desired.
Collapse
Affiliation(s)
- Anna S Stroppel
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Ruth Lappalainen
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| |
Collapse
|
13
|
Stroppel AS, Latifi N, Hanswillemenke A, Tasakis RN, Papavasiliou FN, Stafforst T. Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing. Nucleic Acids Res 2021; 49:e95. [PMID: 34197596 PMCID: PMC8450088 DOI: 10.1093/nar/gkab541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022] Open
Abstract
The SNAP-ADAR tool enables precise and efficient A-to-I RNA editing in a guideRNA-dependent manner by applying the self-labeling SNAP-tag enzyme to generate RNA-guided editases in cell culture. Here, we extend this platform by combining the SNAP-tagged tool with further effectors steered by the orthogonal HALO-tag. Due to their small size (ca. 2 kb), both effectors are readily integrated into one genomic locus. We demonstrate selective and concurrent recruitment of ADAR1 and ADAR2 deaminase activity for optimal editing with extended substrate scope and moderate global off-target effects. Furthermore, we combine the recruitment of ADAR1 and APOBEC1 deaminase activity to achieve selective and concurrent A-to-I and C-to-U RNA base editing of endogenous transcripts inside living cells, again with moderate global off-target effects. The platform should be readily transferable to further epitranscriptomic writers and erasers to manipulate epitranscriptomic marks in a programmable way with high molecular precision.
Collapse
Affiliation(s)
- Anna S Stroppel
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alfred Hanswillemenke
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - F Nina Papavasiliou
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Blomeier T, Fischbach P, Koch LA, Andres J, Miñambres M, Beyer HM, Zurbriggen MD. Blue Light-Operated CRISPR/Cas13b-Mediated mRNA Knockdown (Lockdown). Adv Biol (Weinh) 2021; 5:e2000307. [PMID: 34028208 DOI: 10.1002/adbi.202000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/14/2021] [Indexed: 12/26/2022]
Abstract
The introduction of optogenetics into cell biology has furnished systems to control gene expression at the transcriptional and protein stability level, with a high degree of spatial, temporal, and dynamic light-regulation capabilities. Strategies to downregulate RNA currently rely on RNA interference and CRISPR/Cas-related methods. However, these approaches lack the key characteristics and advantages provided by optical control. "Lockdown" introduces optical control of RNA levels utilizing a blue light-dependent switch to induce expression of CRISPR/Cas13b, which mediates sequence-specific mRNA knockdown. Combining Lockdown with optogenetic tools to repress gene-expression and induce protein destabilization with blue light yields efficient triple-controlled downregulation of target proteins. Implementing Lockdown to degrade endogenous mRNA levels of the cyclin-dependent kinase 1 (hCdk1) leads to blue light-induced G2/M cell cycle arrest and inhibition of cell growth in mammalian cells.
Collapse
Affiliation(s)
- Tim Blomeier
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Patrick Fischbach
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Leonie-Alexa Koch
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Jennifer Andres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Miguel Miñambres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany.,Institute of Plant Biochemistry and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | - Hannes Michael Beyer
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany
| | | |
Collapse
|
15
|
Reichert D, Mootz HD, Rentmeister A. Light-control of cap methylation and mRNA translation via genetic code expansion of Ecm1. Chem Sci 2021; 12:4383-4388. [PMID: 34163701 PMCID: PMC8179545 DOI: 10.1039/d1sc00159k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Gene expression is tightly regulated in all domains of life, with post-transcriptional regulation being more pronounced in higher eukaryotes. Optochemical and optogenetic approaches enable the actuation of many underlying processes by light, which is an excellent tool to exert spatio-temporal control. However, light-mediated control of eukaryotic mRNA processing and the respective enzymes has not been reported. We used genetic code expansion to install a photo-caged tyrosine (Y) in the active site of the cap methyltransferase Ecm1. This enzyme is responsible for guanine N7 methylation of the 5' cap, which is required for translation. Substituting Y284 with the photocaged ortho-nitrobenzyl-tyrosine (ONBY) almost completely abrogated the methylation activity of Ecm1. Irradiation with light removed the ONB group, restoring the native tyrosine and Ecm1 activity, yielding up to 97% conversion of the minimal substrate GpppA within 60 min after activation. Using luciferase- and eGFP-mRNAs as reporters, we could show that light actuates translation by inducing activation of Ecm1 ONBY284 in a eukaryotic in vitro translation system.
Collapse
Affiliation(s)
- Dennis Reichert
- Department of Chemistry, Institute of Biochemistry, University of Münster Correnstr. 36 48149 Münster Germany
- Cells in Motion Interfaculty Center, University of Münster 48149 Münster Germany
| | - Henning D Mootz
- Department of Chemistry, Institute of Biochemistry, University of Münster Correnstr. 36 48149 Münster Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster Correnstr. 36 48149 Münster Germany
- Cells in Motion Interfaculty Center, University of Münster 48149 Münster Germany
| |
Collapse
|
16
|
Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19:839-859. [PMID: 33077937 PMCID: PMC7721651 DOI: 10.1038/s41573-020-0084-6] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Base editing - the introduction of single-nucleotide variants (SNVs) into DNA or RNA in living cells - is one of the most recent advances in the field of genome editing. As around half of known pathogenic genetic variants are due to SNVs, base editing holds great potential for the treatment of numerous genetic diseases, through either temporary RNA or permanent DNA base alterations. Recent advances in the specificity, efficiency, precision and delivery of DNA and RNA base editors are revealing exciting therapeutic opportunities for these technologies. We expect the correction of single point mutations will be a major focus of future precision medicine.
Collapse
Affiliation(s)
- Elizabeth M Porto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Ian M Slaymaker
- Synthetic Biology Department, Beam Therapeutics, Cambridge, MA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences and Bioinformatics and Systems Biology Graduate Programs, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Bhakta S, Sakari M, Tsukahara T. RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code. Sci Rep 2020; 10:17304. [PMID: 33057101 PMCID: PMC7560856 DOI: 10.1038/s41598-020-74374-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Many genetic diseases are caused by T-to-C point mutations. Hence, editing of mutated genes represents a promising strategy for treating these disorders. We engineered an artificial RNA editase by combining the deaminase domain of APOBEC1 (apolipoprotein B mRNA editing catalytic polypeptide 1) with a guideRNA (gRNA) which is complementary to target mRNA. In this artificial enzyme system, gRNA is bound to MS2 stem-loop, and deaminase domain, which has the ability to convert mutated target nucleotide C-to-U, is fused to MS2 coat protein. As a target RNA, we used RNA encoding blue fluorescent protein (BFP) which was derived from the gene encoding GFP by 199 T > C mutation. Upon transient expression of both components (deaminase and gRNA), we observed GFP by confocal microscopy, indicating that mutated 199C in BFP had been converted to U, restoring original sequence of GFP. This result was confirmed by PCR-RFLP and Sanger's sequencing using cDNA from transfected cells, revealing an editing efficiency of approximately 21%. Although deep RNA sequencing result showed some off-target editing events in this system, we successfully developed an artificial RNA editing system using artificial deaminase (APOBEC1) in combination with MS2 system could lead to therapies that treat genetic disease by restoring wild-type sequence at the mRNA level.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, M1-4F, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | - Matomo Sakari
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, M1-4F, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, M1-4F, 1-1 Asahidai, Nomi City, Ishikawa, 923-1292, Japan.
| |
Collapse
|
18
|
Abstract
Base editing is a genome editing strategy that induces specific single-nucleotide changes within genomic DNA. Two major DNA base editors, cytosine base editors and adenine base editors, that consist of a Cas9 protein linked to a deaminase enzyme that catalyzes targeted base conversion directed by a single-guide RNA have been developed. This strategy has been used widely for precise genome editing because, unlike CRISPR-Cas nuclease-based genome editing systems, this strategy does not create double-strand DNA breaks that often result in high levels of undesirable indels. However, recent papers have reported that DNA base editors can cause substantial off-target editing in both genomic DNA and RNA. The off-target editing described in these studies is primarily independent of guide RNA and arises from the promiscuous reactivity of the deaminase enzymes used in DNA base editors. In this Perspective, we discuss the development of DNA base editors, the guide RNA-independent off-target activity reported in recent studies, and strategies that improve the selectivity of DNA base editors.
Collapse
Affiliation(s)
- SeHee Park
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| | - Peter A. Beal
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
19
|
Jing X, Xie B, Chen L, Zhang N, Jiang Y, Qin H, Wang H, Hao P, Yang S, Li X. Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing. Nucleic Acids Res 2019; 46:e90. [PMID: 29860393 PMCID: PMC6125684 DOI: 10.1093/nar/gky433] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
In contrast to genome editing, which introduces genetic changes at the DNA level, disrupting or editing gene transcripts provides a distinct approach to perturbing a genetic system, offering benefits complementary to classic genetic approaches. To develop a new toolset for manipulating RNA, we first implemented a member of the type VI CRISPR systems, Cas13a from Leptotrichia shahii (LshCas13a), in Schizosaccharomyces pombe, an important model organism employed by biologists to study key cellular mechanisms conserved from yeast to humans. This approach was shown to knock down targeted endogenous gene transcripts with different efficiencies. Second, we engineered an RNA editing system by tethering an inactive form of LshCas13a (dCas13) to the catalytic domain of human adenosine deaminase acting on RNA type 2 (hADAR2d), which was shown to be programmable with crRNA to target messenger RNAs and precisely edit specific nucleotide residues. We optimized system parameters using a dual-fluorescence reporter and demonstrated the utility of the system in editing randomly selected endogenous gene transcripts. We further used it to restore the transposition of retrotransposon Tf1 mutants in fission yeast, providing a potential novel toolset for retrovirus manipulation and interference.
Collapse
Affiliation(s)
- Xinyun Jing
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bingran Xie
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longxian Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yiyi Jiang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hang Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
20
|
Abstract
Modifications of RNA affect its function and stability. RNA editing is unique among these modifications because it not only alters the cellular fate of RNA molecules but also alters their sequence relative to the genome. The most common type of RNA editing is A-to-I editing by double-stranded RNA-specific adenosine deaminase (ADAR) enzymes. Recent transcriptomic studies have identified a number of 'recoding' sites at which A-to-I editing results in non-synonymous substitutions in protein-coding sequences. Many of these recoding sites are conserved within (but not usually across) lineages, are under positive selection and have functional and evolutionary importance. However, systematic mapping of the editome across the animal kingdom has revealed that most A-to-I editing sites are located within mobile elements in non-coding parts of the genome. Editing of these non-coding sites is thought to have a critical role in protecting against activation of innate immunity by self-transcripts. Both recoding and non-coding events have implications for genome evolution and, when deregulated, may lead to disease. Finally, ADARs are now being adapted for RNA engineering purposes.
Collapse
|
21
|
Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol 2019; 37:1059-1069. [PMID: 31308540 DOI: 10.1038/s41587-019-0178-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
Current tools for targeted RNA editing rely on the delivery of exogenous proteins or chemically modified guide RNAs, which may lead to aberrant effector activity, delivery barrier or immunogenicity. Here, we present an approach, called leveraging endogenous ADAR for programmable editing of RNA (LEAPER), that employs short engineered ADAR-recruiting RNAs (arRNAs) to recruit native ADAR1 or ADAR2 enzymes to change a specific adenosine to inosine. We show that arRNA, delivered by a plasmid or viral vector or as a synthetic oligonucleotide, achieves editing efficiencies of up to 80%. LEAPER is highly specific, with rare global off-targets and limited editing of non-target adenosines in the target region. It is active in a broad spectrum of cell types, including multiple human primary cell types, and can restore α-L-iduronidase catalytic activity in Hurler syndrome patient-derived primary fibroblasts without evoking innate immune responses. As a single-molecule system, LEAPER enables precise, efficient RNA editing with broad applicability for therapy and basic research.
Collapse
|
22
|
Hanswillemenke A, Stafforst T. Protocols for the generation of caged guideRNAs for light-triggered RNA-targeting with SNAP-ADARs. Methods Enzymol 2019; 624:47-68. [PMID: 31370935 DOI: 10.1016/bs.mie.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SNAP-tag technology offers a convenient way to assemble guideRNA-protein conjugates for transcript-specific RNA editing in vitro, in cell culture and in vivo. In contrast to other methods, including CRISPR/Cas-based, the SNAP-tag is small, well expressed and of human origin. Furthermore, the SNAP-ADAR approach enables the ready inclusion of photo control by caging/decaging of the benzylguanine moiety required for the conjugation reaction with the SNAP-tag. Beyond site-directed RNA editing, the method has high potential for various applications in the field of RNA targeting. However, the generation of the required guideRNAs includes some basic chemistry. Here, we provide step-by-step protocols for (a) conduction of photo controlled RNA editing reaction, (b) the generation of photo activatable guideRNAs, and (c) the synthesis of the caged benzylguanine moiety. With this we hope to foster a broader application of these attractive methods to researchers with less experience in chemistry.
Collapse
Affiliation(s)
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Chen G, Katrekar D, Mali P. RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry 2019; 58:1947-1957. [PMID: 30943016 DOI: 10.1021/acs.biochem.9b00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeted transcriptome engineering, in contrast to genome engineering, offers a complementary and potentially tunable and reversible strategy for cellular engineering. In this regard, adenosine to inosine (A-to-I) RNA base editing was recently engineered to make programmable base conversions on target RNAs. Similar to the DNA base editing technology, A-to-I RNA editing may offer an attractive alternative in a therapeutic setting, especially for the correction of point mutations. This Perspective introduces five currently characterized RNA editing systems and serves as a reader's guide for implementing an appropriate RNA editing strategy for applications in research or therapeutics.
Collapse
Affiliation(s)
- Genghao Chen
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Dhruva Katrekar
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Prashant Mali
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| |
Collapse
|
24
|
Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat Biotechnol 2019; 37:133-138. [PMID: 30692694 DOI: 10.1038/s41587-019-0013-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Site-directed RNA editing might provide a safer or more effective alternative to genome editing in certain clinical scenarios. Until now, RNA editing has relied on overexpression of exogenous RNA editing enzymes or of endogenous human ADAR (adenosine deaminase acting on RNA) enzymes. Here we describe the engineering of chemically optimized antisense oligonucleotides that recruit endogenous human ADARs to edit endogenous transcripts in a simple and programmable way, an approach we call RESTORE (recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing). We observed almost no off-target editing, and natural editing homeostasis was not perturbed. We successfully applied RESTORE to a panel of standard human cell lines and human primary cells and demonstrated repair of the clinically relevant PiZZ mutation, which causes α1-antitrypsin deficiency, and editing of phosphotyrosine 701 in STAT1, the activity switch of the signaling factor. RESTORE requires only the administration of an oligonucleotide, circumvents ectopic expression of proteins, and represents an attractive approach for drug development.
Collapse
|
25
|
Abstract
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.
Collapse
Affiliation(s)
- Holly A Rees
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
26
|
Critical review on engineering deaminases for site-directed RNA editing. Curr Opin Biotechnol 2018; 55:74-80. [PMID: 30193161 DOI: 10.1016/j.copbio.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The game-changing role of CRISPR/Cas for genome editing draw interest to programmable RNA-guided tools in general. Currently, we see a wave of papers pioneering the CRISPR/Cas system for RNA targeting, and applying them for site-directed RNA editing. Here, we exemplarily compare three recent RNA editing strategies that rely on three distinct RNA targeting mechanisms. We conclude that the CRISPR/Cas system seems not generally superior to other RNA targeting strategies in solving the most pressing problem in the RNA editing field, which is to obtain high efficiency in combination with high specificity. However, once achieved, RNA editing promises to complement or even outcompete DNA editing approaches in therapy, and also in some fields of basic research.
Collapse
|